Mechanical Properties of Rubber Toughened Polyester-Kenaf Composites under Active Environment

2013 ◽  
Vol 812 ◽  
pp. 107-112
Author(s):  
N.N. Bonnia ◽  
N.S. Shuhaimen ◽  
A.A. Redzuan

In this study rubber toughened polyester composite filled with kenaf was exposed in different environmental condition such as in artificial sea water (SW), distilled water (DS), environment exposure (Ex) and soil exposure (SL). Rubber-toughened polyester-kenaf fibre composites were prepared by adding 25% of kenaf fibre in unsaturated polyester resin and cross linked with a mixture of methyl ethylketone peroxide and cobalt octanoate. Three percent (3%) of liquid natural rubber (LNR) were added as a toughening agent. The sample was prepared using compression molding technique. The mechanical properties of the composites were evaluated by hardness, flexural and fracture toughness testing. It was found that the samples that being immersed in seawater (SW) had lower mechanical properties as compared to other conditions. The value of hardness strength were decrease about 1.7% and for fracture toughness the decreasing is about 8.53% while flexural strength had been decrease by 30%. Bonding mechanisms were then assessed by scanning electron microscope and FTIR analysis

2013 ◽  
Vol 701 ◽  
pp. 59-63
Author(s):  
N.S. Shuhaimen ◽  
N.N. Bonnia ◽  
Mohd Redzuan Aein Afina ◽  
M.R.H. Mohamed

This study was undertaken to investigate mechanical and morphological properties of rubber toughened polyester composite filled with kenaf and was exposed in varying natural weathering and difference environmental condition (Artificial Sea Water (SW), Distilled Water (DS), Environment Exposure (EX) and Soil Exposure (SL)). Rubber-toughened polyester-kenaf fibre composites were prepared by adding 25% of kenaf fibre in unsaturated polyester resin and cross linked with a mixture of methyl ethylketone peroxide and cobalt octanoate. Three percent (3%) of liquid natural rubber (LNR) were added as a toughening agent. The sample was prepared using compression molding technique. It was found that the samples that being immersed in seawater (SW) had lower mechanical properties values as compare with other conditions. The value of flexural modulus and flexural strength were decrease by 35.9 % , 12.5% but the value of impact strength had slightly increase by 34% .The microstructures of the composites fracture surface were examined using a scanning electron microscope (SEM).


2012 ◽  
Vol 576 ◽  
pp. 318-321 ◽  
Author(s):  
Bonnia Noor Najmi ◽  
Sahrim Haji Ahmad ◽  
Surip Siti Norasmah ◽  
S.S. Nurul ◽  
Noor Azlina Hassan ◽  
...  

Crosslinked polyester clay nanocomposites were prepared by dispersing originically modified montmorillonite in prepromoted polyester resin and subsequently crosslinked using methyl ethyl ketone peroxide catalyst at different clay concentration. Cure process and the mechanical properties of rubber toughened polyester clay composite have been studied. Rubber toughened thermoset polyester composite were prepared by adding 3 per hundred rubber (phr) of liquid natural rubber (LNR) was used in the mixing of producing this composite. Modification of polyester matrix was done due to the brittle problem of polyester composite. Addition of LNR will increase the toughness of composite and produce ductile polyester. Two types of composites were produced which is clay-lnr polyester composite and clay polyester composite. Addition of liquid natural rubber significantly increased the impact strength and flexural properties. Result shows that addition of 6% of clay-lnr composite give good properties on impact, strength and flexural. From the ESCR test, both composites showed good resistance to environmental.


2020 ◽  
Vol 38 (3B) ◽  
pp. 104-114
Author(s):  
Samah M. Hussein

This research has been done by reinforcing the matrix (unsaturated polyester) resin with natural material (date palm fiber (DPF)). The fibers were exposure to alkali treatment before reinforcement. The samples have been prepared by using hand lay-up technique with fiber volume fraction of (10%, 20% and 30%). After preparation of the mechanical and physical properties have been studied such as, compression, flexural, impact strength, thermal conductivity, Dielectric constant and dielectric strength. The polyester composite reinforced with date palm fiber at volume fraction (10% and 20%) has good mechanical properties rather than pure unsaturated polyester material, while the composite reinforced with 30% Vf present poor mechanical properties. Thermal conductivity results indicated insulator composite behavior. The effect of present fiber polar group induces of decreasing in dielectric strength, and increasing dielectric constant. The reinforcement composite 20% Vf showed the best results in mechanical, thermal and electrical properties.


2011 ◽  
Vol 471-472 ◽  
pp. 1034-1039 ◽  
Author(s):  
Zulkiflle Leman ◽  
S.M. Sapuan ◽  
S. Suppiah

Polymer composites using natural fibres as the reinforcing agents have found their use in many applications. However, they do suffer from a few limitations, due to the hydrophilicity of the natural fibres which results in low compatibility with the hydrophobic polymer matrices. This paper aims to determine the best sugar palm (Arenga pinnata) fibre surface treatment to improve the fibre-matrix interfacial adhesion. Fibre surface modifications were carried out by water retting process where the fibres were immersed in sea water, pond water and sewage water for the period of 30 days. The test samples were fabricated by placing a single fibre in an unsaturated polyester resin. Single-fibre pull-out tests showed that freshwater-treated fibres possessed the highest interfacial shear strength, followed by untreated fibres, sewage water-treated fibres, and sea water-treated fibres. Further surface analyses of the samples were performed using a Scanning Electron Microscope (SEM) and an Energy Dispersive X-ray Spectroscopy (EDS) system.


2013 ◽  
Vol 465-466 ◽  
pp. 962-966 ◽  
Author(s):  
Mohd Pahmi bin Saiman ◽  
Mohd Saidin Bin Wahab ◽  
Mat Uzir Wahit

To produce a good quality of dry fabric for reinforced material in a natural-based polymer composite, yarn linear density should be in consideration. A woven kenaf dry fabric with three different linear densities of 276tex, 413.4tex and 759tex were produced. The fabrics with different linear densities were been optimize with the assistance of WiseTex software. The optimized dry fabrics were infused with unsaturated polyester to produce composite panel using vacuum infusion process. The composites properties were tested on the tensile strength, flexural strength and the impact strength. The result shows that the mechanical properties of the composite increased when the yarn linear densities increased.


2021 ◽  
Author(s):  
Aliyu Yaro ◽  
Laminu Kuburi ◽  
Musa Abiodun Moshood

Abstract Polymeric materials are used in different industrial applications because they retain good environmental properties, low-cost, and easy to produce compared to conventional materials. This study investigated the effect of adding kaolin micro-filler (KF) on the mechanical properties of Luffa Fiber (LCF) reinforced polyester resin. Luffa cylindrica fiber treated with 5% NaOH, varied in weight fraction (5, 10, and 15%wt) was used to reinforce unsaturated polyester resin using hand lay-up method, whereas for the hybrid composite kaolin filler were kept constant at 6wt% fraction while the fibers varied as in the mono-reinforced composite. The samples were machined for mechanical and microstructural analysis. Analysis of the result revealed that the addition of kaolin has enhanced greatly the mechanical properties of Luffa-fibre based composites. The result reveal of the microstructure analysis, shows that there is an improvement in fiber-matrix adhesion.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2093589
Author(s):  
Van-Tho Hoang ◽  
Thanh-Nhut Pham ◽  
Young-Jin Yum

Coir is a well-known natural fiber extracted from the husk of a coconut tree. In polymer composite materials, the ultimate performance of coir has been shown using surface modification methods. Among them, sodium hydroxide (NaOH) is a comparative and efficient solution used for surface treatment of lignocellulosic fiber. In contrast to coir, coconut timber, a hardwood that dominates the weight of the coconut tree, has not been appropriately considered for use in polymer composites. Therefore, in this article, coconut trunk particle/unsaturated polyester resin composites were experimentally investigated. As a pioneering study, a large range of NaOH concentrations from 2 wt% to 10 wt% (with an interval of 2 wt%) was utilized to treat the surface of the filler. Finally, 4 wt% alkali solution was found as the best content for surface modification based on the mechanical properties of the composite, including those determined by tensile, flexural, and impact test results.


2017 ◽  
Vol 888 ◽  
pp. 193-197 ◽  
Author(s):  
Nurul Wahida Rusli ◽  
Mohamad Bashree Abu Bakar ◽  
Mohd Zharif Ahmad Thirmizir ◽  
Muhammad Azwadi Sulaiman ◽  
Mohamad Najmi Masri

This study focus on the preparation of kenaf fibre reinforced unsaturated polyester composite through the compressing molding technique. The composite characterizations in flexural and morphological properties. Flexural test revealed that the incorporation of multiple layers of kenaf mat into unsaturated polymer composite (UPE) resulted in the increase of flexural strength. Nevertheless, the UPE alone still showed superior flexural strength since the presence of natural filler/fibre in polymer tends to reduce strength properties. The results proved that the UPE revealed the formation of microcracks. Thus, it has been noticed that the fiber fracture, fiber debondings and holes are some of the defects, which are observed due to the application of the load on the specimen.


2017 ◽  
Vol 894 ◽  
pp. 17-20
Author(s):  
Noor Najmi Bonnia ◽  
Aein Afina Redzuan ◽  
Siti Norasmah Surip ◽  
Noor Azlina Hassan

This research focusing on mechanical properties of rubber toughened polyester filled carbon black (RPCB) reinforced with untreated kenaf (RPCBUK) and treated kenaf (RPCBTK). The samples were fabricated via compression moulding technique in which 3 % of LNR was added as toughening agent in this composite. Percentages of carbon black (CB) is 4 % and kenaf used vary from 5,10,15,20 and 25wt %. The mechanical properties were evaluated by impact and fracture toughness testing. The result for each test was discussed to determine the most optimum loading of kenaf fibre used to produce the best properties of composite. Untreated hybrid composite showed improvement on impact strength as compared to RPCB composite. RPCBTK with 25% of kenaf and RPCBUK with 5% of kenaf loading give the highest impact strength among the hybrid composites, approaching the strength of neat polyester. Same trend shows by fracture toughness testing. The microstructures of the composites’ fracture surface images from scanning electron microscope (SEM) prove the mechanical properties of the hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document