Microstructure and Wear Properties of Fe-Cr-C and Fe-Cr-Si-C Clads on Carbon Steel by TIG Surfacing Process

2009 ◽  
Vol 83-86 ◽  
pp. 1035-1042
Author(s):  
Ghasem Azimi ◽  
Morteza Shamanian

In the present study, the surface of St52 steel was alloyed with preplaced powders Fe-Cr-C and Fe-Cr-Si-C by using a tungsten-inert gas (TIG) heat source. Then microstructure of the alloyed surfaces was investigated. Following the surface alloying, conventional characterization techniques, such as optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction were employed to study the microstructure of the alloyed surface. Microhardness measurements were performed across the alloyed zone. The tribological behavior of the coatings was compared in room temperature dry sliding wear tests. It was found that the as-deposited coatings consisted of higher volume fraction of carbides (Cr7C3). No crack formation was found on the coatings. As a result, TIG arc heat source can be used effectively for performing surface alloying on St52 steel with a preplaced powder in order to improve its surface wear resistance.

2012 ◽  
Vol 445 ◽  
pp. 673-678
Author(s):  
Bijan Abbasi Khazaei

In this research wear mechanism of ADI under different intensity of loading with different hardness have been investigated. To study of wear behavior, a series of austempered specimens with optimum mechanical properties were used for wear tests. Dry sliding wear tests were carried out in pin-on-ring wear tester machine at speed of 0.5 ms-1 and loaded with normal loads of 100,200,300 and 400 N. Scanning electron microscopy for microstructure and wear surface analysis was used. To determine the austenite volume fraction and the percentage of carbon content in austenite, X-ray diffraction analysis was used. Results show that the role of retained austenite at wear properties of ADI is dependent on loading intensity and austenite carbon content.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Dong Mu ◽  
Bao-luo Shen

Some properties of boride formed on gray cast iron (GCI) have been investigated. GCI was boronized by powder-pack method using Commercial LSB-II powders at 1123, 1173, and 1223 K for 2, 4, 6, and 8 h, respectively. Scanning electron microscopy showed that boride formed on the surface of boronized GCI had tooth-shaped morphology. The hardness of boride formed on surfaces of GCI ranged from 1619 to 1343 HV0.025, and quenched and tempered GCI ranged from 400 to 610 HV0.025. The boride formed in the coating layer confirmed by X-ray diffraction analysis was Fe2B single phase. Depending on boronizing time and temperature, the thickness of coating layers on boronized GCI ranged from 26 to 105 μm. The activation energy was 209 kJ/mol for boronized GCI. Moreover, the possibility of predicting the iso-thickness of boride layers variation was studied. Dry-sliding wear tests showed that the wear resistance of boronized sample was greater than that of quenched and tempered sample.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mokgadi Nomsa Mokgalaka ◽  
Sisa Lesley Pityana ◽  
Patricia Abimbola Idowu Popoola ◽  
Tebogo Mathebula

The NiTi intermetallic possesses a number of good properties, such as high wear, oxidation, and corrosion resistance. This paper focuses on the deposition of NiTi intermetallic coatings on Ti6Al4V substrate by laser melting of Ti and Ni elemental powder mixtures. The effect of varying the Ti content in the NiTi composition on the microstructure and wear properties of the coatings was investigated. The microstructure of the NiTi intermetallic coatings were characterized by the scanning electron microscope (SEM) equipped with Energy Dispersive Spectroscope (EDS). The wear properties of the coatings were performed under accelerated dry sliding wear tests. The results obtained from the SEM/EDS analysis; show that the coatings consist of Ni and Ti elements from the feedstock, and the NiTi, NiTi2and NiTi3, intermetallic phases. Dry sliding wear analysis revealed that there is correlation between the hardness and the wear rate. The coatings displayed significant improvement in wear resistance up to 80% compared to the substrate.


2010 ◽  
Vol 154-155 ◽  
pp. 617-620
Author(s):  
Wei Niu ◽  
Rong Lu Sun ◽  
Yi Wen Lei

Self-lubricating h-BN/Ni coating was prepared on a medium carbon steel substrate by CO2 laser cladding using a powder mixture of NiCrBSi+5%h-BN(wt.%). Microstructures and phase structure of the coating were analyzed using SEM, EDS and XRD. Wear tests were carried out using a M100 pin-on-ring wear tester. The results show that h-BN/Ni coating has much superior war resistance and noticeably lower fiction coefficient under dry sliding wear test conditions.


2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540024
Author(s):  
Pengfei Yan ◽  
Deping Wang ◽  
Biao Yan

In this research, Cu-9Pb high leaded bronze were prepared by spray forming. The microstructure and wear properties of this bronze alloy were systematically investigated. The results show that although the hardness of spray formed alloy was not increased comparing with the cast alloy, it still presented a lower wear rate and a lower friction coefficient in dry sliding wear tests as shallower grooves and more lubricating films were observed in the spray formed bronze (BSF14). Spray forming also refined the lead phase microstructure of Cu-9Pb bronze and improved its wear properties.


2012 ◽  
Vol 472-475 ◽  
pp. 2779-2782 ◽  
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Bing Hua Jiang ◽  
Yi San Wang

(Ti,W)C particles reinforced Fe-based surface composite coatings were fabricated by in-situ synthesis and powder metallurgy route. The microstructure, interface and wear properties were investigated by X-ray diffraction, scanning electron microscopy and dry sliding wear test. The results show that (Ti,W)C carbides form via in situ reaction between titanium, ferrotungsten and graphite. The morphology of (Ti,W)C is mainly rectangular form. The interface between (Ti,W)C and iron matrix is found to be free from cracks and deleterious phases. The coating reinforced by (Ti,W)C particles possesses higher wear resistance than that of the substrate.


2007 ◽  
Vol 124-126 ◽  
pp. 1409-1412
Author(s):  
Jung Moo Lee ◽  
Suk Bong Kang ◽  
Jian Min Han

Thick alumina coatings were performed on A356-20vol.% SiCp composites by micro-arc oxidation (MAO) process with different processing time. The dry sliding wear tests were performed on A356-20vol.% SiCp composites with and without surface coating. The samples were tested by pin-on-disc wear test equipment with different applied load and sliding velocity. It is revealed that MAO coating improves resistance to wear of A356-20vol.% SiCp composites in the severe wear conditions. On the basis of the observations and analysis of the worn surface, worn subsurface, wear debris and variation of friction coefficient, the role of MAO coating layer is examined.


2021 ◽  
Vol 63 (1) ◽  
pp. 85-91
Author(s):  
Güven Yarkadaş ◽  
Levent Cenk Kumruoğlu ◽  
Selma Özarslan ◽  
Hüseyin Şevik

Abstract In the present study, the effect of an La alloying element with different quantities (1, 3 and 5 wt.-%) on the microstructure, mechanical and dry sliding wear properties of Mg- 3Al-3Sn-3Sb alloy was investigated. The wear tests were done on the alloys using pin on-disk equipment against a 4140 steel disc as counterpart under three different sliding velocities of 0.3, 0.6 and 1.2 ms-1 and four different loads of 5, 10, 20 and 40 N. The microstructural results showed that the new intermetallic phases (La5Sn3 and LaSnSb2) were formed with addition of La to the main alloy. Also, it was observed that the hardness of the Mg-3Al-3Sn-3Sb alloy was raised with increasing La addition. Furthermore, the tensile properties of the Mg-3Al-3Sn-3Sb alloy improved with rising La content at room and elevated temperature. The wear rates of the alloys increase with increasing of the sliding speed and load. In addition to this, the wear rate of the Mg-3Al-3Sn-3Sb alloy was found to be higher than that of the La content alloys for all test conditions.


Wear ◽  
2008 ◽  
Vol 265 (11-12) ◽  
pp. 1848-1856 ◽  
Author(s):  
L. Zhang ◽  
X.B. He ◽  
X.H. Qu ◽  
B.H. Duan ◽  
X. Lu ◽  
...  

Author(s):  
H. Sh. Hammood ◽  
S. S. Irhayyim ◽  
A. Y. Awad ◽  
H. A. Abdulhadi

Multiwall Carbon nanotubes (MWCNTs) are frequently attractive due to their novel physical and chemical characteristics, as well as their larger aspect ratio and higher conductivity. Therefore, MWCNTs can allow tremendous possibilities for the improvement of the necessarily unique composite materials system. The present work deals with the fabrication of Cu-Fe/CNTs hybrid composites manufactured by powder metallurgy techniques. Copper powder with 10 vol. % of iron powder and different volume fractions of Multi-Wall Carbon Nanotubes (MWCNTs) were mixed to get hybrid composites. The hybrid composites were fabricated by adding 0.3, 0.6, 0.9, and 1.2 vol.% of MWCNTs to Cu- 10% Fe mixture using a mechanical mixer. The samples were compressed under a load of 700 MPa using a hydraulic press to compact the samples. Sintering was done at 900°C for 2 h at 5ºC/min heating rate. The microscopic structure was studied using a Scanning Electron Microscope (SEM). The effect of CNTs on the mechanical and wear properties, such as micro-hardness, dry sliding wear, density, and porosity were studied in detail. The wear tests were carried out at a fixed time of 20 minutes while the applied loads were varied (5, 10, 15, and 20 N). SEM images revealed that CNTs were uniformly distributed with relative agglomeration within the Cu/Fe matrix. The results showed that the hardness, density, and wear rates decreased while the percentage of porosity increased with increasing the CNT volume fraction. Furthermore, the wear rate for all the CNTs contents increased with the applied load.


Sign in / Sign up

Export Citation Format

Share Document