Comparative Study of NR/BR/PP and NR/NBR/PP Ternary Blends for High Abrasion Resistant Thermoplastic Vulcanizates

2013 ◽  
Vol 844 ◽  
pp. 131-134 ◽  
Author(s):  
Soriya Inted ◽  
Natinee Lopattananon ◽  
Bencha Thongnuanchan ◽  
Azizon Kaesaman

High abrasion thermoplastic vulcanizates (TPVs) based on natural rubber (NR)/butadiene rubber (BR)/polypropylene (PP) and NR/acrylonitrile butadiene rubber (NBR)/PP were prepared using melt blending method. The rubber blends of 40/60 NR/BR and 40/60 NR/NBR were firstly prepared to investigate their mechanical and wear-resistant properties. The results indicated that the abrasion resistance of NR/BR blend was much higher than that of the NR/NBR blend, but the tensile strength and elongation at break were lower. TPVs made of NR/BR/PP and NR/NBR/PP blends were then prepared by melt-mixing the rubber blends (i.e., NR/BR or NR/NBR) and PP with composition of rubber to plastic of 60/40. It was found that the NR/BR/PP TPV showed higher strength and abrasion resistance when compared with the NR/NBR/PP TPV due to smaller domain of vulcanized rubber particles. The present study also suggested that the abrasion resistance of NR/BR/PP TPV was slightly lower than that of nylon 6.

2011 ◽  
Vol 311-313 ◽  
pp. 335-338
Author(s):  
Hao Wu ◽  
You Ming Cao

The composites composed of PVC, NBR and BaSO4 particles were prepared by melt blending method. The mechanical properties, microstructure and thermal stability of the composites were investigated. The results indicated that the elongation at break of PVC was greatly improved by addition of NBR, while the tensile strength was decreased. The elongation at break and the tensile strength of PVC/NBR composites first increased and then decreased with the increasing content of BaSO4, and the maximum were emerged at 5phr BaSO4 addition. The initial decomposition temperature of the composites composed of PVC, NBR and BaSO4 is 10.79°C greater than that of the composites composed of PVC and NBR. The scanning electron microscopy photograph showed that NBR and BaSO4 particles were uniformly dispersed in the PVC matrix when the addition of NBR and BaSO4 particles was low.


2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


2018 ◽  
Vol 51 (6) ◽  
pp. 493-511
Author(s):  
Fabián E Hernández ◽  
C Medina ◽  
G Moraga ◽  
J Ramírez ◽  
AF Jaramillo ◽  
...  

The purpose of this work was to correlate the effects of thermal aging on the macroscopic properties and microstructural changes for three vulcanized rubber types. The materials were subjected to accelerated thermal aging for periods between 0 and 168 h at 100°C. This aging was evaluated by investigating the mechanical properties and by Fourier transform infrared (FTIR) and Raman analysis. The results showed that subjecting the materials to thermal aging for a longer time decreased the elongation at break and tear strength and increased the hardness, while tensile strength exhibited different behavior and followed a different trend. The spectroscopy analyses indicated that there is a decrease in the amount of C=C present in the polymer as the aging time increased, which could be identified by the decrease in peak intensity at 1537 and 1600 cm−1 in the FTIR and Raman spectrum, respectively. These results were attributed mainly to an increase in cross-link density, which caused degradation of the material, essentially by a loss of ductility. A good linear relation ( R2 approximately 0.95) between changes in the intensity of FTIR peaks for the C=C signal and changes in elongation at break and hardness was found, concluding that these are good indicators of degradation in elastomers.


2013 ◽  
Vol 844 ◽  
pp. 297-300 ◽  
Author(s):  
Alif Walong ◽  
Azizon Kaesaman ◽  
Tadamoto Sakai ◽  
Natinee Lopattananon

Blends of natural rubber (NR) and polypropylene (PP) with composition of 60/40 %wt were prepared by using an internal mixer to obtain thermoplastic vulcanizate (TPV). Aluminium trihydrate (ATH) and magnesium hydroxide (MH) were used as fillers to improve thermal stability and fire retardant properties. Three different mixing methods were used to incorporate the fillers into the TPVs, which were (1) compounding of NR and filler followed by dynamic vulcanization of NR during blending with PP, (2) compounding of NR with a half part of filler (and oil) followed by dynamic vulcanization of NR when blending with PP before adding another half part of filler into the blend (3) melt mixing of PP, NR and filler followed by dynamic vulcanization during mixing. The incorporation of ATH and MH decreased tensile strength and elongation at break of the TPVs, but increased the thermal stability and LOI%. From this work, the mixing of filler with NR/PP blend by using method 3 provided better balance of tensile, thermal and fire resistant properties and processing cost reduction.


2015 ◽  
Vol 754-755 ◽  
pp. 201-204
Author(s):  
Ragunathan Santiagoo ◽  
Sam Sung Ting ◽  
Azlinda Abdul Ghani ◽  
Hanafi Ismail ◽  
Awiezan Mislan

The compatibilizer effect of ENR-50 on the tensile properties of high density polyethylene (HDPE)/recycled acrylonitrile butadiene rubber (NBRr)/banana skin powder (BSP)/ composites has been studies. HDPE/NBRr/BSP composites were prepared by melt mixing technique using twin-screw at 180 °C for 9 minutes at rotor speed 50 rpm. The six different composites studied were 100/0/5, 80/20/5, 70/30/5, 60/40/5, 50/50/5, and 40/60/5. As for compatibilized composite a fix 5 wt% of ENR-50 was evaluated. The specimens were analysed for tensile strength and elongation at break (Eb). The results showed that tensile strength and the elongation at break were decreases with the increasing of NBRr loading. However for ENR-50 compatibilized composites, higher tensile strength and elongation at break was recorded. The ENR-50 was found to be an excellent compatibilizer for HDPE/NBRr/BSP composites.


2014 ◽  
Vol 34 (9) ◽  
pp. 813-821 ◽  
Author(s):  
Gaurav Madhu ◽  
Haripada Bhunia ◽  
Pramod K. Bajpai ◽  
Veena Chaudhary

Abstract Polyblend films were prepared from high-density polyethylene (HDPE) and poly(l-lactic acid) (PLLA) up to 20% PLLA by the melt blending method in an extrusion mixer with post-extrusion blown film attachment. The 80/20 (HDPE/PLLA) blend was compatibilized with maleic anhydride grafted polyethylene (PE-g-MA) in varying ratios [up to 8 parts per hundred of resin (phr)]. Tensile properties of the films were evaluated to obtain optimized composition for packaging applications of both non-compatibilized and compatibilized blends. The compositions HDPE80 (80% HDPE and 20% PLLA) and HD80C4 (80% HDPE, 20% PLLA and 4 phr compatibilizer) were found to be optimum for packaging applications. However, better tensile strength (at yield) and elongation (at break) of 80/20 (HDPE/PLLA) blend were noticed in the presence of PE-g-MA. Further, thermal properties and morphologies of these blends were evaluated. Differential scanning calorimetry (DSC) study revealed that blending does not much affect the crystalline melting point of HDPE and PLLA, but heat of fusion of 80/20 (HDPE/PLLA) blend was decreased as compared to that of neat HDPE. Spectroscopy studies showed evidence of the introduction of some new groups in the blends and gaining compatibility in the presence of PE-g-MA. The compatibilizer influenced the morphology of the blends, as apparent from scanning electron microscopy (SEM) and supported by Fourier transform infrared (FTIR).


2011 ◽  
Vol 117-119 ◽  
pp. 1402-1405
Author(s):  
Hao Wu ◽  
You Ming Cao

PVC/BaSO4 composites were prepared by melt blending method. The mechanical properties, microstructure and thermal stability of the composites were investigated. The results indicated that BaSO4 decreased the tensile yield stress and improved the elongation at break of PVC composites. Ductile fracture characteristics such were observed in the tensile fracture surface of PVC/BaSO4 composites. The toughening mechanism was cavitations toughening mechanism and shear zone toughening mechanism. The reaction of dehydrochlorination was limited by the addition of BaSO4.


Sign in / Sign up

Export Citation Format

Share Document