Properties of Fire Retardant Thermoplastic Vulcanizates from NR/PP Blends Filled with Aluminium Trihydrate and Magnesium Hydroxide with Reference to the Effect of Mixing Methods

2013 ◽  
Vol 844 ◽  
pp. 297-300 ◽  
Author(s):  
Alif Walong ◽  
Azizon Kaesaman ◽  
Tadamoto Sakai ◽  
Natinee Lopattananon

Blends of natural rubber (NR) and polypropylene (PP) with composition of 60/40 %wt were prepared by using an internal mixer to obtain thermoplastic vulcanizate (TPV). Aluminium trihydrate (ATH) and magnesium hydroxide (MH) were used as fillers to improve thermal stability and fire retardant properties. Three different mixing methods were used to incorporate the fillers into the TPVs, which were (1) compounding of NR and filler followed by dynamic vulcanization of NR during blending with PP, (2) compounding of NR with a half part of filler (and oil) followed by dynamic vulcanization of NR when blending with PP before adding another half part of filler into the blend (3) melt mixing of PP, NR and filler followed by dynamic vulcanization during mixing. The incorporation of ATH and MH decreased tensile strength and elongation at break of the TPVs, but increased the thermal stability and LOI%. From this work, the mixing of filler with NR/PP blend by using method 3 provided better balance of tensile, thermal and fire resistant properties and processing cost reduction.

2017 ◽  
Vol 751 ◽  
pp. 264-269
Author(s):  
Nipawan Yasumlee ◽  
Sirirat Wacharawichanant

The effects of microcrystalline cellulose (MCC) on mechanical, thermal and morphological properties of polyoxymethylene (POM)/polypropylene (PP) blends at different compositions were investigated. The blends and composites were prepared by melt mixing using an internal mixer at 200°C. Scanning electron microscopy (SEM) analysis revealed phase separation between POM and PP phases due to the difference in polarity of POM and PP. When adding the MCC in the blends the morphology slightly changed due to the weak interaction between MCC and polymer phases. Incorporation of MCC at 5 phr could improve Young’s modulus of POM/PP blends. The storage modulus of the blends was improved after adding MCC 5 phr due to reinforcing effect of the MCC. The thermal properties found that the addition of MCC had no effect on the melting temperature of the blends. The blends exhibited higher decomposition temperature than pure POM. The blends showed the decomposition temperatures increased when increasing amount of PP content, which were higher than pure POM. Therefore, it may be inferred that the addition of PP could enhance the thermal stability of the POM/PP blends, but the addition of MCC did not improve the thermal stability.


2013 ◽  
Vol 734-737 ◽  
pp. 2191-2194
Author(s):  
Li Li Wu ◽  
Yuan Lian ◽  
Dan Liu ◽  
Hua Zheng ◽  
Dian Wu Huang

In this study, flame retardant microcapsules were synthesized using magnesium hydroxide as core materials, melamine resin as the shell material. The structure, diameters and thermal properties of prepared microcapsules were investigated by using FTIR, ELS, DSC and TGA. The effects of core/shell ratio on the properties of microcapsules were studied.Flame retardant materials of low-density polyethylene/magnesium hydroxide microcapsules were prepared.The tensile strength and elongation at break tests were performed to determine its mechanical property.Inflammability of the materials was also studied.The results showed the prepared magnesium hydroxide microcapsule shows good thermal stability and it has free compatibility with the polymer.The composites of HDPE/MH microcapsules have good performance.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1954
Author(s):  
Yang Liu ◽  
Xun Zhang ◽  
Quanxin Gao ◽  
Hongliang Huang ◽  
Yongli Liu ◽  
...  

In the present study, silver (Ag) nanoparticles and maleic anhydride-grafted polyolefin elastomer (MAH-g-POE) were used as enhancement additives to improve the performance of the polyoxymethylene (POM) homopolymer. Specifically, the POM/Ag/MAH-g-POE ternary nanocomposites with varying Ag nanoparticles and MAH-g-POE contents were prepared by a melt mixing method. The effects of the additives on the microstructure, thermal stability, crystallization behavior, mechanical properties, and dynamic mechanical thermal properties of the ternary nanocomposites were studied. It was found that the MAH-g-POE played a role in the bridging of the Ag nanoparticles and POM matrix and improved the interfacial adhesion between the Ag nanoparticles and POM matrix, owing to the good compatibility between Ag/MAH-g-POE and the POM matrix. Moreover, it was found that the combined addition of Ag nanoparticles and MAH-g-POE significantly enhanced the thermal stability, crystallization properties, and mechanical properties of the POM/Ag/MAH-g-POE ternary nanocomposites. When the Ag/MAH-g-POE content was 1 wt.%, the tensile strength reached the maximum value of 54.78 MPa. In addition, when the Ag/MAH-g-POE content increased to 15wt.%, the elongation at break reached the maximum value of 64.02%. However, when the Ag/MAH-g-POE content further increased to 20 wt.%, the elongation at break decreased again, which could be attributed to the aggregation of excessive Ag nanoparticles forming local defects in the POM/Ag/MAH-g-POE ternary nanocomposites. Furthermore, when the Ag/MAH-g-POE content was 20 wt.%, the maximum decomposition temperature of POM/Ag/MAH-g-POE ternary nanocomposites was 398.22 °C, which was 71.39 °C higher than that of pure POM. However, compared with POM, the storage modulus of POM/Ag/MAH-g-POE ternary nanocomposites decreased with the Ag/MAH-g-POE content, because the MAH-g-POE elastomer could reduce the rigidity of POM.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Hossein Ali Khonakdar ◽  
Jalil Morshedian ◽  
Hamid Yazdani

AbstractComposites of polypropylene (PP) with mica powder were produced by melt mixing in an internal mixer. In this research work, the effect of the interfacial modifiers such as maleated polypropylene (MAPP) and silane coupling agent, that encapsulated the mica (treated mica), on the mechanical, thermal and rheological characteristics of mica-filled PP have been investigated. In the literature, it can be seen that increasing mica powder leads to reduced crystallinity of PP. But our results show that reduction in crystallinity is noticeably lesser when interfacial modifier such as MAPP is used. Also, the results of thermogravimetric analysis test showed that MAPP and treated mica caused improvement of heat resistance of the composites. The degradation shifted to higher temperatures which could be due to adhesion between PP and mica powder. The mica powder when added to PP increased the viscosity considerably. However treated mica/PP composite in molten state had noticeably less viscosity in comparison with that of neat micafilled PP and thus having better moldability. Results of decrease in elongation at break with filler content have been compared with predictions of Nielsen’s model and Mitsuishi equation.


2012 ◽  
Vol 602-604 ◽  
pp. 690-695
Author(s):  
Hua Dong Wang ◽  
Rui Wang ◽  
Mao Fang Huang ◽  
Qi Yang

Thermoplastic vulcanizates (TPVs) based on epoxidized natural rubber (ENR) and polypropylene (PP) were prepared in an internal mixer at 180°C. The effects of curing systems (i.e., sulfur and peroxide) on morphological, rheological, thermal and mechanical properties were studied. It is found that the sulfur cured TPVs show higher tensile strength, tear strength and elongation at break than those cured with the DCP systems. The rheological analysis indicates that TPVs cured with DCP system show lower apparent shear viscosity than those with sulfur system. SEM studies show that TPVs vulcanized with DCP system exhibit smaller and finely dispersed rubber domains, which provides it higher thermal stability than sulfur cured TPVs.


2012 ◽  
Vol 626 ◽  
pp. 54-57 ◽  
Author(s):  
Chanida Manleh ◽  
Charoen Nakason ◽  
Natinee Lopattananon ◽  
Azizon Kaesaman

Thermoplastic vulcanizates based on natural rubber and polypropylene blend (NR/PP) was prepared via dynamic vulcanization by melt mixing process at 180°C and a rotor speed of 60 rpm. Three types of vulcanizing agent (i.e., Tetramethyl thiuram disulfide (TMTD), 4,4 Dithiodimorpholine (DTDM) and Dipentamethylene thiuram tetrasulfide (Tetrone A)) were used to cure the rubber phase of NR/PP blends. Influence loading levels of sulfur donor at 1, 2 and 3 phr on dynamic properties and crosslink density were studied. The result showed that the dynamically cured NR/PP blends with Tetrone A gave higher mechanical properties, storage modulus, complex viscosity, and crosslink density with the lower value of tanδ than those of the blends with TMTD and DTDM. Furthermore, the storage modulus, complex viscosity and crosslink density of TPVs increased with increasing loading levels for all types of sulfur donor. It was also found that thermal stability of dynamically cured NR/PP blends is higher than that of the pure NR.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3928
Author(s):  
Vikneswari Sanmuham ◽  
Mohamed Thariq Hameed Sultan ◽  
A. M. Radzi ◽  
Ahmad Adlie Shamsuri ◽  
Ain Umaira Md Shah ◽  
...  

This study aims to investigate the effect of AgNPs on the mechanical, thermal and antimicrobial activity of kenaf/HDPE composites. AgNP material was prepared at different contents, from 0, 2, 4, 6, 8 to 10 wt%, by an internal mixer and hot compression at a temperature of 150 °C. Mechanical (tensile, modulus and elongation at break), thermal (TGA and DSC) and antimicrobial tests were performed to analyze behavior and inhibitory effects. The obtained results indicate that the effect of AgNP content displays improved tensile and modulus properties, as well as thermal and antimicrobial properties. The highest tensile stress is 5.07 MPa and was obtained at 10wt, TGA showed 10 wt% and had improved thermal stability and DSC showed improved stability with increased AgNP content. The findings of this study show the potential of incorporating AgNP concentrations as a secondary substitute to improve the performance in terms of mechanical, thermal and antimicrobial properties without treatment. The addition of AgNP content in polymer composite can be used as a secondary filler to improve the properties.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2308
Author(s):  
Iman Taraghi ◽  
Sandra Paszkiewicz ◽  
Izabela Irska ◽  
Krzysztof Pypeć ◽  
Elżbieta Piesowicz

In this paper, the mechanical properties, thermal stability, and transparency of ethylene–propylene copolymer (EPC) elastomer modified with various weight percentages (1, 3, and 5 wt.%) of SiO2 nanofillers have been studied. The nanocomposites were prepared via a simple melt mixing method. The morphological results revealed that the nanofillers were uniformly dispersed in the elastomer, where a low concentration of SiO2 (1 wt.%) had been added into the elastomer. The FTIR showed that there are interfacial interactions between EPC matrix and silanol groups of SiO2 nanoparticles. Moreover, by the addition of 1 wt.% of SiO2 in the EPC, the tensile strength and elongation at break of EPC increased by about 38% and 27%, respectively. Finally, all samples were optically transparent, and the transparency of the nanocomposites reduced by increasing the content of SiO2 nanoparticles.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 632 ◽  
Author(s):  
Jianbing Guo ◽  
Jian Wang ◽  
Yong He ◽  
Hui Sun ◽  
Xiaolang Chen ◽  
...  

Soybean oil is beneficial to improve the compatibility between polylactide (PLA) and succinylated lignin (SAL), which leads to the preparation of a host of biobased composites containing PLA, SAL, and epoxidized soybean oil (ESO). The introduction of SAL and ESO enables the relatively homogeneous morphology and slightly better miscibility obtained from triply PLA/SAL/ESO composites after dynamic vulcanization compared with unmodified PLA. The rigidity of the composites is found to decline gradually due to the addition of flexible molecular chains. According to the reaction between SAL and ESO, the Tg of PLA/SAL/ESO composites is susceptible to the movement of flexible molecular chains. The rheological behaviors of PLA/SAL/ESO under different conditions, i.e., temperature and frequency, exhibit a competition between viscidity and elasticity. The thermal stability of the composites displays a slight decrease due to the degradation of SAL and then the deterioration of ESO. The elongation at break and notched impact strength of the composites with augmentation of ESO increase by 12% and 0.5 kJ/m2, respectively. The triply biobased PLA/SAL/ESO composite is thus deemed as a bio-renewable and environmentally friendly product that may find vast applications.


Sign in / Sign up

Export Citation Format

Share Document