Characterization, Photoluminescence and Magnetic Properties of SiC Nanowires Synthesized with Nickel Catalyst via Microwave Heating

2013 ◽  
Vol 873 ◽  
pp. 188-194 ◽  
Author(s):  
Song Liu ◽  
Shan Huang ◽  
Ji Gang Wang

Large scale SiC nanowires were synthesized through a rapid and low-cost microwave heating method. Silicon, silica, graphite and nickel powders were used as raw materials and catalyst, respectively, and no inert protective gas was employed during the preparation. The microstructures of the products were comprehensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and transmission electron microscopy (TEM). Results showed that the nanowires have lengths of several dozens of micrometers and diameters of 50nm approximately. The growth of them was governed by vapor-liquid-solid (VLS) growth mechanism. In addition, the photoluminescence (PL) and magnetic properties of the products were subsequently investigated by fluorescent photometer and vibrating sample magnetometer (VSM). The PL spectrum, employing a Xe laser (240 nm) as an excitation source, shows an emission band centered at about 390 nm, indicating that the obtained SiC nanowires possess excellent optical property. The hysteresis loop shows big magnetic saturation (Ms) of 0.96 emu/g and small coercivity (Hc) of 37.92 Oe. So, the obtained SiC nanowires can be characterized as typical soft magnetic material, and the improvement of magnetic properties may be attributed to the existence of Ni2Si phase in the SiC nanowires.

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 558 ◽  
Author(s):  
Heli Wan ◽  
Baoqiang Xu ◽  
Lanjie Li ◽  
Bin Yang ◽  
Dongming Li ◽  
...  

A novel method was developed to produce AlV55 alloy through reducing impurities content and component segregation with electrode assisted heating technology. This new process synergistically integrates a few low-cost process techniques, including granulation, mixing, and electro-heating to produce AlV55 alloy. During the heating process, the CaO is used as an additive in the raw materials. The uniform of AlV55 alloy composition and low impurities content are effectively controlled by this process. The analysis results show that Si (0.13 wt%), Fe (0.22 wt%), N (0.007 wt%), C (0.078 wt%), and O (0.051 wt%) impurities in the AlV55 products were reduced, which met the commercial standard (TS/T 579-2014), and V content ranged from 57.5 to 58.5 wt% when the Al/V2O5 mass ratio was 0.94:1. This method can realize the controllability of the reaction process and is suitable for large-scale industrial production.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Syairah Liyana Mohd Abd Ghafar ◽  
Mohd Zobir Hussein ◽  
Zuki Abu Bakar Zakaria

The development of cockle shell-based calcium carbonate aragonite polymorph nanoparticle synthesis method using the technique of mechanical stirring in the presence of dodecyl dimethyl betaine (BS-12) incorporated with surface functionalization demonstrated high homogeneity of sample product with good nanoparticles dispersion. The cockle shell-based calcium carbonate aragonite nanoparticle with functionalized surface was characterized using transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), particle size distribution, pH measurement analysis, Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). Surface functionalization was proven to improve the overall size and shape of the nanoparticles and enhance their dispersion properties, preventing coarse agglomeration among nanoparticles in general. The improved method was verified to retain its aragonite crystalline nature. Additionally, surface functionalization did not increase the size of nanoparticles throughout the modification process. This facile preparation using naturally occurring cockle shells as the main source is environmentally friendly because it provides relatively low cost of raw material source as it is abundantly available in nature and has good mineral purity content. Hence, high quality production of surface functionalized cockle shell-based calcium carbonate aragonite polymorph nanoparticles can potentially be exploited and produced on a large scale for various industrial applications, especially for biomedical purposes in the near future.


2020 ◽  
Vol 12 (1) ◽  
pp. 11-15
Author(s):  
Dwi Puryanti

The synthesis of Fe3O4 nanoparticles with iron rock raw materials was carried out using a coprecipitation method. Iron rocks were taken from the Surian village, South Solok of West Sumatera. This research was conducted to utilize local materials and produce low cost, varied magnetic materials to be applied to the electric and electronics industries. Iron sand as a base material was obtained by processing the iron rocks through destruction and extraction. Iron sand that has been extracted is reacted with HCL and NH4OH. Furthermore, the PEG-2000 were added as a template to homogenize and inhibit the growth of particles. Heating temperature variation performed to see the effect of temperature on the magnetic properties of the particles. Heating temperature variations were used at 500 ̊C, 600 ̊C, and 700 ̊C. Phase composition of the samples were confirm using X-ray diffraction method. Characterization of magnetic properties carried out using Vibrating Sample Magnetometer (VSM). The results of magnetic properties show that the saturation magnetization decreases with increasing heating temperature in the range of 32.6883 emu/g, 20,1632 emu/g, and 10.4734 emu/g respectively. The value of coercive force, HC obtained in the range of 13,840 A/m – 19,120 A/m. The results show that Fe3O4 can be used as a magnetic recording material.


2008 ◽  
Vol 8 (4) ◽  
pp. 2151-2156 ◽  
Author(s):  
Jianjun Chen ◽  
Guangyi Yang ◽  
Renbing Wu ◽  
Yi Pan ◽  
Jing Lin ◽  
...  

Abundant hexagonal prism-shaped SiC nanowires were synthesized on graphite substrate via heating silicon in a graphite crucible. The products were characterized using X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The characterization first showed that the product was nanowires of β-SiC with almost a perfect hexagonal cross section. The growth was determined along [111] direction. The six side surfaces look smooth under low magnification microscopy, but faceted at high magnification. Based on the characterization results, a formation mechanism combining vapor–solid (VS) growth mechanism and the lowest surface energy principle is proposed.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Kh. Nurul Islam ◽  
A. B. Z. Zuki ◽  
M. E. Ali ◽  
Mohd Zobir Bin Hussein ◽  
M. M. Noordin ◽  
...  

A simple and low-cost method for the synthesis of calcium carbonate nanoparticles from cockle shells was described. Polymorphically, the synthesized nanoparticles were aragonites which are biocompatible and thus frequently used in the repair of fractured bone and development of advanced drug delivery systems, tissue scaffolds and anticarcinogenic drugs. The rod-shaped and pure aragonite particles of30±5 nm in diameter were reproducibly synthesized when micron-sized cockle shells powders were mechanically stirred for 90 min at room temperature in presence of a nontoxic and nonhazardous biomineralization catalyst, dodecyl dimethyl betaine (BS-12). The findings were verified using a combination of analytical techniques such as variable pressure scanning electron microscopy (VPSEM), transmission electron microscopy (TEM), Fourier transmission infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), and energy dispersive X-ray analyser (EDX). The reproducibility and low cost of the method suggested that it could be used in industry for the large scale synthesis of aragonite nanoparticles from cockle shells, a low cost and easily available natural resource.


2020 ◽  
pp. 0734242X2093517
Author(s):  
Raheleh Talavari ◽  
Shokoufe Hosseini ◽  
GR Moradi

With the production of renewable biofuels, concerns about the end of fossil fuels have been partially eliminated. On the other hand, the utilization of low-cost and waste materials to provide the raw essential substances to manufacture these fuels is of paramount importance. Biodiesel is one of these fuels and the required raw materials for the reaction are oil (triglycerides), alcohol and catalyst. In this work, travertine stone powder (as waste in the manufacture of building materials) was used as a catalyst and waste frying oil as a source of triglyceride for biodiesel production. Using thermogravimetric and X-ray diffraction analysis, optimum temperature for catalyst calcination was selected at 900°C. Furthermore, X-ray fluorescence, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller, transmission electron microscopy and scanning electron microscopy analyses were performed. Using the design of experiments Response Surface Methodology, the optimum reaction conditions for biodiesel production yield of 97.74% were: reaction temperature 59.52°C (~60°C), time 3.8 h (228 min), catalyst concentration 1.36 wt.% and the methanol to oil molar ratio of 11:6. After reusing four times, the catalyst efficiency was reduced a little, and the biodiesel yield was 89.84%, indicating high strength and stability of the catalyst.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Y. F. Liang ◽  
S. Wang ◽  
H. Li ◽  
Y. M. Jiang ◽  
F. Ye ◽  
...  

Melt spinning method has been widely applied for fabrication of Fe-based amorphous/nanocrystalline ribbons in industry. Compared with Fe-based amorphous/nanocrystalline alloys, Fe-6.5wt%Si high silicon steel is of low cost and has comparable excellent soft magnetic properties. Due to higher melting point and absence of supercooled liquid region, fabrication of Fe-6.5wt%Si ribbons is very hard and is only on lab scale. In this paper, we report that large scale fabrication of Fe-6.5wt%Si ribbons was successful and microstructures, ordered structures, and mechanical and soft magnetic properties of the ribbons were investigated. Due to rapid solidification rate, the ribbons were of ultrafine grains, and low degree of order and exhibited some extent of bending and tensile ductility. After heat treatment, excellent soft magnetic properties were obtained. Due to near-zero magnetostriction, the ribbons are promising to be used in electric devices with high frequencies where low noises are required.


2018 ◽  
Vol 9 ◽  
pp. 2813-2831 ◽  
Author(s):  
Sherif Okeil ◽  
Jörg J Schneider

The design of efficient substrates for surface-enhanced Raman spectroscopy (SERS) for large-scale fabrication at low cost is an important issue in further enhancing the use of SERS for routine chemical analysis. Here, we systematically investigate the effect of different radio frequency (rf) plasmas (argon, hydrogen, nitrogen, air and oxygen plasma) as well as combinations of these plasmas on the surface morphology of thin silver films. It was found that different surface structures and different degrees of surface roughness could be obtained by a systematic variation of the plasma type and condition as well as plasma power and treatment time. The differently roughened silver surfaces act as efficient SERS substrates showing greater enhancement factors compared to as prepared, sputtered, but untreated silver films when using rhodamine B as Raman probe molecule. The obtained roughened silver films were fully characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron (XPS and Auger) and ultraviolet–visible spectroscopy (UV–vis) as well as contact angle measurements. It was found that different morphologies of the roughened Ag films could be obtained under controlled conditions. These silver films show a broad range of tunable SERS enhancement factors ranging from 1.93 × 102 to 2.35 × 105 using rhodamine B as probe molecule. The main factors that control the enhancement are the plasma gas used and the plasma conditions, i.e., pressure, power and treatment time. Altogether this work shows for the first time the effectiveness of a plasma treatment for surface roughening of silver thin films and its profound influence on the interface-controlled SERS enhancement effect. The method can be used for low-cost, large-scale production of SERS substrates.


2012 ◽  
Vol 433-440 ◽  
pp. 3106-3111 ◽  
Author(s):  
Yan Ling Wang

Logistics supply chain system management is the integration of key business processes from end user through original logistics suppliers that provides products, services, and information that add value for customers and other stakeholders. Logistics supply chain is a network of suppliers, factories, warehouses, distribution centers and retailers where the raw materials are acquired, manufactured to products, which then are delivered to consumers. The increase of customer expectations in low cost and high services quality has put a premium on effective logistics supply chain reengineering. Many efforts have been endeavoring to improve the supply chain performance to achieve high agility without increasing costs For improved competitiveness, supply chain logistics system in the industry has become more and more important for modern businesses, especially for the major retailing corporations. Multi-agent system which can effectively process distributed large scale data is developed for the logistics supply chain coordinate system.


2007 ◽  
Vol 561-565 ◽  
pp. 1413-1416 ◽  
Author(s):  
Bin Lu ◽  
J.X. Liu ◽  
H.W. Zhu ◽  
X.H. Jiao

Large-scale silicon carbide nanowires are prepared by pure silicon powder and phenolic resin, which are mixed, molded, carbonizated, and then subjected to the microwave heating with a rate of 10oC/min between 1300 and 1400oC in the static argon atmosphere for 0.5~2h. The patterns of the SiC nanowires are characterized by means of SEM, the composition of the samples are determined through EDX. The prepared nanowires have the diameters between 20 to 100nm. The current results imply that liquid silicon can act as a catalyzer during the formation of SiC nanowires.Introduction Since the discovery of carbon nanotubes by Iijima[1], there has been great interest in the synthesis and characterization of other one-dimensional (1D) structures. Nanowires, nanorods and nanobelts constitute an important class of 1D nanostructures, which provide models to study the relationship between electrical transport, optical and other properties with dimensionality and size confinemen[2~7]. The 1D nanowires can also act as active components in devices as revealed by recent investigations[8,9]. Up to now, several techniques for preparing SiC nanowires have been developed. Dai et al.[5] synthesized SiC nanorods via the reaction of carbon nanotubes with SiO. Zhou et al. [6] synthesized SiC nanowires by hot filament chemical vapor deposition (CVD). Liang et al.[9] grew SiC nanowires by carbothermal reduction of silica xerogels embedded with Fe nanoparticles, etc. However, many of these routes involved complex processes and high cost. The usage of metal catalyst for the vapor–liquid–solid (VLS) growth mechanism makes it difficult to remove the resident catalyst after the synthetic process. In this paper, it is reported that a simple and low cost synthetic route is developed for the preparation of SiC nanowires by microwave heating technique without any catalyst. The prepared nanowires have core-shell structure with the diameters between 20 to 100nm. The growth of these SiC nanowires is considered to involve a VLS process.


Sign in / Sign up

Export Citation Format

Share Document