Combined Atomistic-Continuum Modeling of Nano-EDM Process

2014 ◽  
Vol 887-888 ◽  
pp. 1210-1214 ◽  
Author(s):  
He Li ◽  
Jian Wen Guo ◽  
Wu Yi Ming ◽  
Zhen Zhang

Nano electrical discharge machining (nanoEDM) method is an attractive measure to the manufacturing of parts of nanoscale dimension or precision, and is getting more and more interest of researchers, however, due to the incompleteness of EDM theories, the development of more advanced nanoEDM technology is impeded. In this paper, a hybrid simulation model, namely, combination of the molecular dynamics simulation model and two-temperature model of single discharge process in nanoEDM is constructed to study the machining process of nanoEDM from the thermal point of view.

Author(s):  
Pengfei Ji ◽  
Mengzhe He ◽  
Yiming Rong ◽  
Yuwen Zhang ◽  
Yong Tang

A multiscale modeling that integrates electronic scale ab initio quantum mechanical calculation, atomic scale molecular dynamics simulation, and continuum scale two-temperature model description of the femtosecond laser processing of nickel film at different thicknesses is carried out in this paper. The electron thermophysical parameters (heat capacity, thermal conductivity, and electron-phonon coupling factor) are calculated from first principles modeling, which are further substituted into molecular dynamics and two-temperature model coupled energy equations of electrons and phonons. The melting thresholds for nickel films of different thicknesses are determined from multiscale simulation. Excellent agreement between results from simulation and experiment is achieved, which demonstrates the validity of modeled multiscale framework and its promising potential to predict more complicate cases of femtosecond laser material processing. When it comes to process nickel film via femtosecond laser, the quantitatively calculated maximum thermal diffusion length provides helpful information on choosing the film thickness.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Nirdesh Ojha ◽  
Florian Zeller ◽  
Claas Mueller ◽  
Holger Reinecke

Electrical discharge machining (EDM) is widely used to manufacture complex shaped dies, molds and critical parts in conductive materials. With the help of an assisting electrode (AE), EDM process can be used to machine nonconductive ceramics. This paper evaluates the mechanical properties of three high-performance nonconductive ceramics (ZrO2, Si3N4, and SiC) that have been machined with the EDM process using AE. Mechanical properties such as Vickers hardness (HV 0.3), surface roughness (Sq), and flexural strength of the machined and the nonmachined samples are compared. The EDM process causes decrease in Vickers hardness, increase in surface roughness, and decrease in flexural strength.


2012 ◽  
Vol 622-623 ◽  
pp. 380-384 ◽  
Author(s):  
T. Muthuramalingam ◽  
B. Mohan

In automobile and aeronautical industries, complex moulds and dies is produced by Electrical Discharge Machining process. The surface finish is determined by the crater volume in EDM process. The amount of crater volume is influenced by the amount and distribution of discharge energy. The discharge energy is directly proportional to the average discharge current. This amount of current is determined by the duration of discharging effect. This study deals about evaluating the performance of iso current pulse generator on machining characteristics in EDM. Due to its ability of reducing stochastic nature in EDM process, iso pulse generator could produce better surface finish than conventional transistor pulse train generator with higher material removal rate.


2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Shengfang Zhang ◽  
Wenchao Zhang ◽  
Yu Liu ◽  
Fujian Ma ◽  
Chong Su ◽  
...  

In electrical discharge machining (EDM) process, the debris removed from electrode material strongly affects the machining efficiency and accuracy, especially for the deep small hole machining process. In case of Ti alloy, the debris movement and removal process in gap flow between electrodes for small hole EDM process is studied in this paper. Based on the solid-liquid two-phase flow equation, the mathematical model on the gap flow field with flushing and self-adaptive disturbation is developed. In our 3D simulation process, the count of debris increases with number of EDM discharge cycles, and the disturbation generated by the movement of self-adaptive tool in the gap flow is considered. The methods of smoothing and remeshing are also applied in the modeling process to enable a movable tool. Under different depth, flushing velocity, and tool diameter, the distribution of velocity field, pressure field of gap flow, and debris movement are analyzed. The statistical study of debris distribution under different machining conditions is also carried out. Finally, a series of experiments are conducted on a self-made machine to verify the 3D simulation model. The experiment results show the burn mark at hole bottom and the tapered wall, which corresponds well with the simulating conclusion.


2020 ◽  
Vol 66 (4) ◽  
pp. 243-253 ◽  
Author(s):  
Sanjay Sundriyal ◽  
Vipin ◽  
Ravinderjit Singh Walia

Near-dry electrical discharge machining (ND-EDM) is an eco-friendly process. In this study, an approach has been made to make the machining process more efficient than ND-EDM with the addition of metallic powder with the dielectric medium to machine EN-31 die steel. Powdermixed near-dry EDM (PMND-EDM) has several advantages over the ND-EDM or conventional electrical discharge machining (EDM) process, such as a higher material removal rate (MRR), fine surface finish (Ra), sharp cutting edge, lesser recast layer, and lower deposition of debris. The output response variables are MRR, Ra, residual stress (RS) and micro-hardness (MH) of the machined surfaces. Further study of the workpiece was performed, and a comparative study was conducted between ND-EDM and PMND-EDM. In this proposed method of machining, the MRR, Ra, and MH increased by 17.85 %, 16.36 %, and 62.69 % while RS was reduced by 56.09 %.


2014 ◽  
Vol 941-944 ◽  
pp. 2127-2133 ◽  
Author(s):  
Nirdesh Ojha ◽  
Florian Zeller ◽  
Claas Mueller ◽  
Holger Reinecke

The ability to machine advanced ceramic materials such as ZrO2, SiC, and AlN is of high interest for various industries because of the extraordinary material properties that these ceramics possess. Once sintered, these ceramics are characterized with high mechanical strength, high thermal stability and high chemical inertness. Therefore it is extremely difficult to machine these ceramics with dimensions in few microns using traditional techniques. Electrical discharge machining (EDM) is an electro-thermal machining process used to structure conductive materials. By applying a conductive layer on top of the non-conductive material, the EDM process can also be used to machine the non-conductive material. This paper presents a study on the effect of tool polarity and tool rotation on the material removal rate and electrode wear ratio during the EDM process of non-conductive SiC, ZrO2 and AlN ceramics. The reasons for the variation in the material removal rates among the different ceramics are examined by comparing the material properties. Relatively lower value of flexural strength, fracture toughness and melting temperature is the reason for AlN ceramic to have the higher MRR than SiC and ZrO2 ceramics.


NANO ◽  
2011 ◽  
Vol 06 (06) ◽  
pp. 561-568 ◽  
Author(s):  
G. TAHMASEBIPOUR ◽  
Y. TAHMASEBIPOUR ◽  
M. GHOREISHI

Electrical discharge machining (EDM) process is one of the advanced machining processes that can machine the various complex shapes from all conductor and semiconductor materials. Wide and diverse applications of Micro-EDM process in microfabrication and micro- to nano-miniaturization tendency is promising application of Nano-EDM process in nanofabrication. The Nano-EDM is a precise, sensitive and costly process. Therefore, simulation of nanocrater produced by each spark in this process prevents spending extra time and cost to perform Nano-EDM process through trial and error method. In this paper nanocrater machined by the Nano-EDM process on a gold nanofilm is simulated under practically experimental conditions. Radius, depth and volume of the nanocrater are evaluated versus process conditions (average power and pulse duration) and workpiece thickness (50 nm, 100 nm and 300 nm). It is observed that radius of the nanocrater is increased exponentially with increasing spark pulse duration. Also, depth, volume of the removed material from the workpiece surface and material removal rate (MRR) are increased with increasing consumed energy by each spark. By increasing thickness of the nanofilm, volume of the removed material and dimensions of the nanocrater are decreased.


Author(s):  
Jagdeep Singh ◽  
Rajiv Kumar Sharma

Abstract Electrical discharge machining (EDM) process is established as an important non-conventional machining method because of its capability to machine very difficult-to-machine (DTM) materials like alloys, composites, die steels etc. Despite the numerous advantages, process has some limitations such as this process consumes huge amount of energy, slow material removal rate, hazardous emissions, generation of toxic dielectric and slurry which make this process an unsuitable and hazardous process. Due to these reasons it is also considered harmful for machine operator and environmental conditions. Whereas, due to increased environmental government regulations (ISO 14000 standards), the cost of manufacturing is getting increased. Therefore, it has become necessary to make the machining process very capable and safe so that both the aspects get managed. This motivates the authors to undertake critical literature scrutiny of recent hybrid integrations with EDM process to perform a safe machining of DTM materials. Also, the work performed in making the process green is reviewed. Authors, concluded that despite, the huge advancement happens in EDM hybridization like powder-mixed EDM, dry EDM, tap water EDM, vibration assisted tool or workpiece etc., still advancement is required in process mechanism which provides high machining efficiency and minimal environmental health hazards.


Sign in / Sign up

Export Citation Format

Share Document