Preparation and Characterization of Polyurethane Foams from Modified Rosin-Based Polyether Polyol

2014 ◽  
Vol 887-888 ◽  
pp. 727-730
Author(s):  
Meng Zhang ◽  
Li Qiang Zhang ◽  
Yong Hong Zhou

Rosin based polyether polyols were synthesized from rosin formaldehyde adduct, propylene epoxide and ethylene epoxide in the presence of catalyst. Rigid polyurethane foams (PUFs) were prepared with these rosin-based polyols and compared with foam made with an industrial polyether polyol (TC-4110) and rosin-based polyester polyols. The mechanical and thermal properties of foams were analyzed by some methods. The experimental results show that the foaming behavior for the foams prepared from such rosin based polyether polyols is similar to that of industrial products, but the reaction activities were higher, the viscosities are much lower. Furthermore, their 10% compression strength and thermal stability were higher and the dimensional stability is similar or somewhat better than that of TC-4110 system. All these unique properties of rigid PUFs made with rosin based polyether polyols were more suitable for as industrial production.

2012 ◽  
Vol 32 (8-9) ◽  
pp. 493-502 ◽  
Author(s):  
Kyeong Hoon Jang ◽  
Eung-Soo Kim ◽  
Young Ho Jeon ◽  
Jin-San Yoon

Abstract Na+ montmorillonite (MMT) was modified with benzyldimethyltetradecylammonium chloride (B13) and further with (3-mercaptopropyl)triethoxysilane and vinyltrimethoxysilane to prepare B13-MMT, mercaptomethylorthosilicate modified MMT (MTMO), and vinyltrimethoxysilane modified MMT (VTMO), respectively. The pristine and modified clays were compounded with an HTV-type silicone rubber (GP-30®), and the physical properties and morphology of the resulting rubber composites were examined. Both HTV/MTMO and HTV/VTMO exhibited an intercalated/exfoliated coexisting morphology, but the degree of exfoliation of the former composite was higher than that of the latter. Moreover, the thermal stability, as assessed by the onset temperature of thermal degradation, as well as the tensile stress, elongation at the break, and tear strength of HTV/MTMO was higher than those of HTV/B13-MMT and HTV/VTMO. However, the cross-linking density of HTV/MTMO was the lowest among the composites examined because the thiol groups of MTMO extinguished and abstracted the radicals formed by the curing agent. Accordingly, the improved mechanical and thermal properties of HTV/MTMO were attributed to the enhanced interactions between HTV and MTMO due to the chemical reaction between the thiol groups of MTMO and the vinyl groups of HTV.


2015 ◽  
Vol 21 (3) ◽  
pp. 262-269 ◽  
Author(s):  
Shih-Hsuan Chiu ◽  
Sigit Tri Wicaksono ◽  
Kun-Ting Chen ◽  
Chiu-Yen Chen ◽  
Sheng-Hong Pong

Purpose – The purpose of this paper is to evaluate the mechanical properties of photopolymer/CB (carbon black) nanocomposite when applied in a visible-light rapid prototyping (RP) machine. Design/methodology/approach – The mechanical properties of the samples such as hardness and tensile strength along with thermal stability were analyzed. The curing time behavior of the photopolymer/CB nanocomposites was tested by using a rigid-body pendulum rheometer. The shrinkage property and dimensional stability were also analyzed using the technique according to ASTM D2566 and ASTM D1204, respectively. Findings – The results showed that the prototype fabricated from pristine photopolymer tended to exhibit poor mechanical properties and low thermal stability. However, after adding the photopolymer with various concentrations of nano-CB and dispersant in appropriate composition, the photopolymer/CB nanocomposite prototype not only reduced its curing time but also enhanced its mechanical properties, thermal stability and dimensional stability. Practical implications – The presented results can be used in a visible-light RP machine. Originality/value – The mechanical and thermal properties of photopolymer are improved with nano-CB additives for a RP system.


2020 ◽  
pp. 089270572092512
Author(s):  
Mohammad Y Al-Haik ◽  
Saud Aldajah ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This article addresses the effect of nanocrystalline cellulose (NCC) on the mechanical and thermal properties of polypropylene (PP). A new approach was adopted to produce mechanically improved and thermally stable PP-NCC nanocomposite. This approach involved producing optimized PP-NCC nanocomposite by adding NCC nanoparticles to PP matrix at different concentrations by means of injection molding process. The aim of this work was to find the optimum NCC concentration to enhance the mechanical and thermal properties of the PP matrix. The mechanical and thermal behavior of PP-NCC nanocomposite was studied by performing three-point bend, nanoindentation, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) spectroscopy tests. The results showed that the mechanical properties of strength, modulus, and hardness of the nanocomposites increased with the addition of NCC by 6.5%, 19%, and 150%, respectively. DSC results showed that the addition of NCC to PP does not affect the thermal stability (melting temperature). However, TGA showed that upon inclusion of NCC nanoparticles, the thermal stability of the samples improved compared to pure PP except for the 5% added NCC. This is attributed to the presence of NCC rod-like particles that dissipated heat by generating tortuous paths, as depicted in the SEM results and verified by FTIR results.


2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


2019 ◽  
Vol 17 (1) ◽  
pp. 1080-1086
Author(s):  
Elżbieta Chmiel-Szukiewicz

AbstractSyntheses of oligoetherols with a 1,3-pyrimidine ring and boron atoms using 6-aminouracil, ethylene carbonate and boric acid has been proposed. The structure of the obtained products were determined by instrumental methods (IR, 1H-NMR and MALDI-ToF spectra). The physicochemical and thermal properties of oligoetherols were examined. The products were characterized by high thermal stability. Based on the tests performed, it was found that oligoetherols obtained from 6-aminouracil, boric acid and ethylene carbonate are suitable for the manufacturing of polyurethane foams with improved thermal stability and reduced flammability.


2021 ◽  
Author(s):  
Qifeng Jiang ◽  
Sydnee Wong ◽  
Rebekka S Klausen

Thermal characterization of polysilanes has focused on the influence of organic side chains, whereas little is understood about the influence of silane backbone microstructure on thermal stability, phase properties, and...


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Vesna Rek ◽  
Ivana Ćosić

The effect of the addition of talc on the morphology and thermal properties of blends of thermoplastic polyurethane (TPU) and polypropylene (PP) was investigated. The blends of TPU and PP are incompatible because of large differences in polarities between the nonpolar crystalline PP and polar TPU and high interfacial tensions. The interaction between TPU and PP can be improved by using talc as reinforcing filler. The morphology was observed by means of scanning electron microscopy (SEM). The thermal properties of the neat polymers and unfilled and talc filled TPU/PP blends were studied by using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The addition of talc in TPU/PP blends improved miscibility in all investigated TPU/T/PP blends. The DSC results for talc filled TPU/PP blends show that the degree of crystallinity increased, which is due to the nucleating effect induced by talc particles. The reason for the increased storage modulus of blends with the incorporation of talc is due to the improved interface between polymers and filler. According to TGA results, the addition of talc enhanced thermal stability. The homogeneity of the talc filled TPU/PP blends is better than unfilled TPU/PP blends.


2014 ◽  
Vol 343 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Reinaldo Yoshio Morita ◽  
Juliana Regina Kloss ◽  
Ronilson Vasconcelos Barbosa

Sign in / Sign up

Export Citation Format

Share Document