Study of Cement Composites Properties with Filler Based on Wood Pulp

2014 ◽  
Vol 897 ◽  
pp. 165-170 ◽  
Author(s):  
Lucia Kidalova ◽  
Nadežda Števulová ◽  
Anton Geffert

Sustainable building materials are based on the use of renewable materials instead of non-renewable. A large group of renewable raw materials are materials of plant origin containing cellulosic fibres which are used as filler into building material with reinforcement function of composite. This study aimed to establish the mechanical and physical properties of cement composites with organic filler, such as wood pulp. Pulp derived from wood pulping process is very interesting material as reinforcement in cement which contributes to a reduction of pollutants. In this paper, utilization of unbleached and bleached wood pulp in combination with cement matrix with emphasis on the physical and mechanical properties is studied. Varying the producing technology (wood pulp and cement ratio in mixture) it is possible to obtain composites with density from 940 to 1260 kg.m-3 and with compressive strength from 1.02 to 5.44 MPa after 28 days of hardening. The experimental results of mechanical properties indicate that cement composites with using unbleached wood pulp reaches higher values than composites based on bleached wood pulp. The percentage of water uptake increased with increasing the volume ratio of unbleached wood pulp in composite.

Author(s):  
Viola Hospodarova ◽  
Nadezda Stevulova ◽  
Vojtech Vaclavik ◽  
Tomas Dvorsky ◽  
Jaroslav Briancin

Nowadays, construction sector is focusing in developing sustainable, green and eco-friendly building materials. Natural fibre is growingly being used in composite materials. This paper provides utilization of cellulose fibres as reinforcing agent into cement composites/plasters. Provided cellulosic fibres coming from various sources as bleached wood pulp and recycled waste paper fibres. Differences between cellulosic fibres are given by their physical characterization, chemical composition and SEM micrographs. Physical and mechanical properties of fibre-cement composites with fibre contents 0.2; 0.3and 0.5% by weight of filler and binder were investigated. Reference sample without fibres was also produced. The aim of this work is to investigate the effects of cellulose fibres on the final properties (density, water absorbability, coefficient of thermal conductivity and compressive strength) of the fibrecement plasters after 28 days of hardening. Testing of plasters with varying amount of cellulose fibres (0.2, 0.3 and 0.5 wt. %) has shown that the resulting physical and mechanical properties depend on the amount, the nature and structure of the used fibres. Linear dependences of compressive strength and thermal conductivity on density for plasters with cellulosic fibres adding were observed.


2014 ◽  
Vol 9 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Lucia Kidalova ◽  
Nadezda Stevulova ◽  
Anton Geffert

Abstract Sustainable building materials are based on the use of renewable materials instead of non-renewable. Large group of renewable materials composes of plant fibres having high tensile strength are used as fillers into building material with reinforcement function of composite. This study aimed to establish the mechanical and physical properties of cement composites with organic fillers, such as wood pulp. Wood pulp cellulose is very interesting material as reinforcement in cement which contributes to a reduction of pollutants. Varying the producing technology (wood pulp and cement ratio in mixture) it is possible to obtain composites with density from 940 to 1260 kgm-3 and with compressive strength from 1.02 to 5.44 MPa after 28 days of hardening. Based on the experimental results, cement composites with using unbleached wood pulp reach higher values than composites based on bleached wood pulp. Volume ratio of unbleached wood pulp in composites influences water absorbability of cement composites


2021 ◽  
Vol 103 (3) ◽  
pp. 83-92
Author(s):  
V.V. Glukhikh ◽  
◽  
A.E. Shkuro ◽  
P.S. Krivonogov ◽  
◽  
...  

The results of TPLC scientific research, practical experience of their preparation, and application as of 2016 are presented in eight volumes of the “Handbook of Composites from Renewable Materials” (2017, John Wiley & Sons, Inc.). This article provides an analysis of books and articles with open access to the Science Direct (Elsevier) database for the period 2017–2020 to assess the biodegradation rate and physical and mechanical properties of polymer composites with lignocellulosic fillers. The production and use of polymer composites with a thermoplastic polymer matrix and lignocellulosic fillers (TPLC) have significant ecological and eco- nomic prospects since waste biomass from forests, agriculture, and polymers obtained from petroleum raw materials can be used for their production. However, depending on the TPLC application area, there are opposite requirements for the biodegradation rate. For the use in construction and medicine materials and products must have a minimum biodegradation rate. Materials and products for single-use packaging must have the necessary biodegradability potential and have an adjusted biodegradation rate in soil, water, compost environment. Research results show that the properties of TPLC can be significantly influenced not only by the physical but also by the chemical structure of all components of these composites. The chemical properties of polymers, fillers, additives for various purposes can affect their industrial production efficiency.


2018 ◽  
Vol 8 (1) ◽  
pp. 363-367 ◽  
Author(s):  
Nadezda Stevulova ◽  
Viola Hospodarova ◽  
Vojtech Vaclavik ◽  
Tomas Dvorsky ◽  
Tomas Danek

AbstractNowadays, there is paying an attention to the utilization of natural, renewable and biodegradable resources of raw materials of lignocellulosic character, residues from agricultural crops and wood processing as well as waste from papermaking industry in building composite materials preparing. Also recycled fibres coming from waste paper are considered as valuable material. The objective of this study is to utilize these recycled cellulosic fibres into cement composites and characterise their impact on resulting physical and mechanical properties of fresh and hardened cement composites. Manufactured cement composites contained 0.2%, 0.3% and 0.5% addition of cellulosic fibres. In fresh fibre cement mixtures reduction in workability with increasing amount of cellulose fibres was noticed. Density as well as compressive and flexural strength of 28 and 90 days hardened fibre cement composites was tested. Distribution of cellulosic fibres with 0.5% addition in hardened fibre cement composites was also observed. The results of density determination of 28 and 90 days hardened fibre cement composites showed reduction in their values related to weight lighter concretes. Compressive strengths of fibre cement composites have shown decreasing character with increasing added amount of cellulosic fibres into the mixture up to 0.5%. Maximal decrease in compressive strength values was observed in composites containing 0.5% of cellulosic fibres. However, obtained strength parameter values of hardened composites had satisfying results for their application in construction as non-load bearing building material.


2018 ◽  
Vol 41 ◽  
pp. 02012 ◽  
Author(s):  
Mourad Samir ◽  
Faruz Alama ◽  
Paul Buysse ◽  
Tomas van Nylen ◽  
Oleg Ostanin

The main directions of mining and industrial wastes’ utilization are the production of building materials, their use in the construction industry without additional processing, and also the production of metals from metal-containing raw materials. It should be noted that current waste is preferable for the production of building materials, since they preserve the primary physical and mechanical properties and chemical composition and, moreover, can reach the consumer bypassing all other steps that are mandatory for waste consolidated (transportation, storage, etc.). For the production of building materials, not less than 30% of overburden and refinement tailings are suitable, almost all metallurgical and fuel slags, waste products of fertilizers and building materials. Even larger amounts of waste can be used for various laying and burial works (construction of road bases and dams, filling of worked out areas, leveling of the relief).


2020 ◽  
Vol 3 (5) ◽  
pp. 34-42
Author(s):  
A. Kozin ◽  
R. Fedyuk ◽  
Yu. Il'inskiy ◽  
S. Yarusova ◽  
P. Gordienko ◽  
...  

Improvement of the physical and mechanical properties of cement composites should be accompanied by the disposal of industrial waste of various generation. Therefore, the paper proposes the principles of controlling the strength properties of concrete, which consist in the complex effect of wollastonite obtained from boron production waste on the processes of structure formation of the cement matrix. When this introduced in an amount of 2-8 wt. % wollastonite has a dual function as a mineral filler and a reinforcing fiber. It has been proven that in the presence of wollastonite, the concrete mix becomes lighter without reducing its physical and mechanical properties. It was revealed that the early strength for all the developed compositions with the addition of wollastonite increases due to the acceleration of hydration processes. Calcium silicate, which is wollastonite CaSiO3, has a close chemical composition with cement clinker, especially with Ca2SiO4 belite and Ca3SiO5 alite. This leads to the formation of a chemically homogeneous and, as a result, hardened microstructure. Elongated wollastonite fibers with good adhesion to the cement stone provide effective micro-reinforcement of the concrete composite. Using the results will lead to the possibility of designing high-strength concretes, including for special structures


2021 ◽  
Vol 45 (5) ◽  
pp. 417-421
Author(s):  
Laid Baali ◽  
Larbi Belagraa ◽  
Mohamed Aziz Chikouche ◽  
Leila Zeghichi

The use of waste and by-products has been for many decades for the manufacturing of building materials such as concrete and mortars. That responds simultaneously to reasons of economy of natural resources in aggregates (C&D waste) and the possibility of recovering industrial waste additions as replacement in composites. The present study focuses on the use of plastic waste fibers embedded in the cement matrix of self-compacting concrete SCC to improve its properties, either rheological mainly, the stability at fresh state or mechanical responses such as compressive and tensile strengths at hard state. This incorporation of plastic fiber reinforcement on the structure matrix could result an alternative SCC composite as a ductile material with enhanced properties. In this context, the self-compacting composites by adding a variable percentage of plastic fibers at 0.5, 1, 1.5% is formulated. Hence, the effect of plastic fibers waste on the rheological and mechanical properties of SCC is assessed. The obtained results in the present study let us to conclude the beneficial effect of such inclusion of plastic fibers on this new confected SCC fiber composition with acceptable rheological, physical and mechanical properties compared to those of a normal SCC concrete.


2015 ◽  
Vol 1124 ◽  
pp. 156-163
Author(s):  
Tomáš Melichar ◽  
Jiří Bydžovský

This paper is focused on the study of the parameters of developed composite materials with a polymer-cement matrix modified by raw materials from alternative resources. Test specimens were gradually exposed to extreme temperatures and subsequently cooled in a controlled manner under different conditions. Heat stress was applied up to 1,000°C. The effects of controlled gradual or shock water cooling were monitored on the basis of physical and mechanical properties. The by-products currently produced by the power and metallurgical industries were used as substitution components for matrix modification.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3079
Author(s):  
Beata Jaworska ◽  
Dominika Stańczak ◽  
Joanna Tarańska ◽  
Jerzy Jaworski

The generation of energy for the needs of the population is currently a problem. In consideration of that, the biomass combustion process has started to be implemented as a new source of energy. The dynamic increase in the use of biomass for energy generation also resulted in the formation of waste in the form of fly ash. This paper presents an efficient way to manage this troublesome material in the polymer–cement composites (PCC), which have investigated to a lesser extent. The research outlined in this article consists of the characterization of biomass fly ash (BFA) as well as PCC containing this waste. The characteristics of PCC with BFA after 3, 7, 14, and 28 days of curing were analyzed. Our main findings are that biomass fly ash is suitable as a mineral additive in polymer–cement composites. The most interesting result is that the addition of biomass fly ash did not affect the rheological properties of the polymer–cement mortars, but it especially influenced its compressive strength. Most importantly, our findings can help prevent this byproduct from being placed in landfills, prevent the mining of new raw materials, and promote the manufacture of durable building materials.


Sign in / Sign up

Export Citation Format

Share Document