Performance of Sodium Chlorite/Urea on Simultaneous Desulfurization and Denitrification in a Rotating Packed Bed

2014 ◽  
Vol 908 ◽  
pp. 183-186 ◽  
Author(s):  
Hong Guan Wu ◽  
Mei Jin ◽  
Fang Wang ◽  
Guo Xian Yu ◽  
Ping Lu

Performance of simultaneous desulfurization and denitrification from N2-NO-SO2simulated flue gas using sodium chlorite as the additive and urea as the reductant in a rotating packed bed was investigated. In RPB, various rotational speeds, the flow rates of SO2, the flow rates of NO and the liquid flow rates were studied by means of the calculation of the removal efficiencies of SO2and NO. The experimental results showed that the removal efficiency of SO2was higher than 99.00% under various experimental conditions, while the removal efficiency of NO exhibited different results. A better simultaneous desulfurization and denitrification behavior could be obtained under the conditions of a SO2-NO-N2simulated flue gas with the ratio of SO2/NO/ N2=6:4:8.33(v), a rotational speed of 460 rpm and an absorbent flow rate of 120 L/h.

2014 ◽  
Vol 908 ◽  
pp. 187-190
Author(s):  
Mei Jin ◽  
Guo Xian Yu ◽  
Fang Wang ◽  
Ping Lu

In this work, simultaneous absorption of SO2and NO from N2-NO-SO2simulated flue gas using sodium chlorate as the additive and urea as the reductant was investigated experimentally in a rotating packed bed. In RPB, various rotational speeds, gas flow rates and liquid flow rates were studied by means of the removal efficiency of SO2and NO. The experimental results showed that the removal efficiency of SO2was higher than 99.00% under various experimental conditions and, at the same time, the removal efficiency of NO exhibited different results under various experimental conditions. The simultaneous NO removal efficiency of 82.45% and the SO2removal efficiency of 99.49% could be obtained under the N2flow rate of 0.5 m3/h, SO2flow rate of 6 mL/min, the NO flow rate of 4 mL/min, the rotational speed of 460 rpm and the absorbent flow rate of 40 L/h.


2021 ◽  
Vol 19 (1) ◽  
pp. 288-298
Author(s):  
Lien Thi Tran ◽  
Tuan Minh Le ◽  
Tuan Minh Nguyen ◽  
Quoc Toan Tran ◽  
Xuan Duy Le ◽  
...  

Abstract This study explores the possibility of applying high-gravity rotating packed bed (HGRPB) in removing H2S and CO2 from biogas. Ca(OH)2 aqueous solution was used as the absorbent in this study. Different experimental conditions including solution pH, rotating speed (R S) of HGRPB, gas flow rate (Q G), and liquid flow rate (Q L) were investigated with respect to the removal efficiency (E) of H2S and CO2. The experimental and simulated results show that the optimal removal efficiency of H2S and CO2 using HGRPB achieved nearly the same as 99.38 and 99.56% for removal efficiency of H2S and 77.28 and 77.86% for removal efficiency of CO2, respectively. Such efficiencies corresponded with the following optimal conditions: a solution pH of 12.26, HGRPB reactor with the rotating speed of 1,200 rpm, the gas flow rate of 2.46 (L/min), and the liquid flow rate of 0.134 (L/min).


2013 ◽  
Vol 726-731 ◽  
pp. 2182-2185
Author(s):  
Li Juan He ◽  
Jie Qiong Li ◽  
Yan Ling Ni ◽  
Jun Hua Yi ◽  
Wen Fei Wu

Based on the vapor-liquid equilibrium principle, a new rotating packed absorption tower was presented against some traditional gas-liquid countercurrent tower defects. An experimental device was built to test CO2 absorption efficiency in the packed absorption tower under the given experimental conditions. The experimental results show that the new packed absorption tower can capture the simulated flue gas CO2 and have a higher efficiency 87.8%.


2009 ◽  
Vol 9 (4) ◽  
pp. 469-475
Author(s):  
T. Turtiainen

Radon is one of the contaminants that sometimes impair the water quality of wells, especially those drilled in bedrock. Domestic radon removal units based on aeration have been commercially available for more than ten years. In order to determine how effectively these units remove radon a new test protocol applying frequent sampling while letting 100 litres of water flow, was developed. This way, removal efficiencies can be more accurately calculated and possible malfunctions detected. Seven models of domestic aerators designed for removing radon from household water were tested. The aerators were based on diffused bubble aeration, spray aeration or jet aeration. The average removal efficiencies for 100 litres with a medium flow rate were 86–100% except for a unit that circulated the aerated water back to the well that had removal efficiency of 80% at the maximum. By conducting a questionnaire study usual problems related to the aeration units were localized and recommendations on maintenance and installation are given accordingly.


2013 ◽  
Vol 781-784 ◽  
pp. 1637-1645 ◽  
Author(s):  
Ting Jun Ma ◽  
Yi Qing Xu

The degradation effectiveness and reaction kinetics of representative organophosphorus (OP) pesticide in a packed-bed plasma reactor have been studied. Important parameters, including peak voltage, pulse frequency, gas-flow rate, initial concentration, diameter of catalyst particles, and thickness of catalyst bed which influences the removal efficiency, were investigated. Experimental results indicated that rogor removal efficiency as high as 80% can be achieved at 35 kV with the gas flow rate of 800 mL/min and initial concentration of 11.2 mg/m3.The removal efficiency increased with the increase of pulsed high voltage, and pulse frequency, the decrease of the diameter of catalyst particles and the thickness of catalyst bed. Finally, a model was established to predict the degradation of the rogor, which generally can simulate the experimental measurements to some degree.


2014 ◽  
Vol 908 ◽  
pp. 277-281
Author(s):  
Fei Wu ◽  
Jie Wu ◽  
Mei Jin ◽  
Fang Wang ◽  
Ping Lu

Based on acetone-H2O system, the influence of the gas-liquid distribution inducer on the mass transfer coefficient in the rotating packed bed with the stainless steel packing was investigated. Furthermore, the absorption performance was also obtained under the experimental condition of the rotational speed of 630 rpm, the gas flow rate of 2 m3/h and the liquid flow rate of 100 L/h in the rotating packed bed with different types and different installation ways of the distribution inducer. The experimental results showed that the volumetric mass transfer coefficient Kyα per unit contact length of gas-liquid was increased by 8.6% for the forward-curved fixed blade, by 19.8% for the backward-curved rotor blade and by 33.2% with the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. Furthermore, when the gas flow rate was 2.5 m3/h, Kyα per unit contact length of gas-liquid was increased by 2.9% for the forward-curved fixed blade, by 25.3% for the backward-curved rotor blade, by 42.7% for the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. The results indicated that the distribution inducer play an important role on the improvement of the mass transfer coefficient in acetone-H2O system.


Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 43 ◽  
Author(s):  
Hongfang Lu ◽  
Guoguang Ma ◽  
Mohammadamin Azimi ◽  
Lingdi Fu

In the dehydration process of offshore natural gas production, due to the site limitation of the platform, if the conventional triethylene glycol (TEG) dehydration process is employed, the size of the absorption tower is usually small. However, in the case of fluctuations in raw material gas and large gas production, it is easy to cause a large loss of TEG and a flooding event, resulting in the water dew point of natural gas not meeting the requirements. Therefore, combined with the dehydration process of TEG and supergravity technology, a new dehydration process of natural gas suitable for offshore platforms is proposed in this paper. The principle and process of the TEG dehydration process based on supergravity technology are discussed by establishing a mass transfer model. The laboratory experiment of the new process is carried out, and the effects of TEG flow rate, super-gravity packed bed rotation speed, and gas flow rate on the air dew point are obtained. By studying the dewatering balance of the rotating packed bed in the improved process, it is proved that the dewatering performance of the high gravity machine (Higee) is much better than that of the ordinary tower dewatering equipment. Through field experiments, the dewatering effect of continuous operation and sudden changes in working conditions is obtained, indicating that the Higee can completely replace the traditional tower equipment for natural gas dehydration.


2017 ◽  
Vol 12 (3) ◽  
pp. 576-588 ◽  
Author(s):  
Seyed Ahmad Mirbagheri ◽  
Sima Malekmohamadi ◽  
Sheida Sohrabi Nasrabadi

Clarifying is one of the most crucial stages in water treatment at water treatment plants. Determining the type of the clarifier in water treatment plants and using it efficiently is necessary. In this study, a pilot is designed and constructed in which the pulsator, the superpulsator and the accelerator are simulated. For each system, turbidity removal efficiency for different influent turbidities and flow rates were studied and the optimum condition was obtained. The results showed that the superpulsator has a superior performance compared to the pulsator, and the pulsator has a superior performance compared to the accelerator and these differences are more sensible at higher flow rates. Also, the best condition for achieving the highest efficiency for the pulsator and the superpulsator is determined to be at flow rate 3 lit/min for an initial turbidity of 2,500 NTU with alum as the coagulant and the highest efficiency for the accelerator is determined to be at flow rate 3 lit/min for an initial turbidity of 2,500 NTU with ferric chloride as the coagulant. Comparing the turbidity removal efficiency shows that for 67% of the cases, ferric chloride has a better performance as the coagulant compared to alum and increasing the influent turbidity leads to an increase in the removal efficiency. Furthermore, three water treatment plants located in Tehran were studied and their characteristics were compared and suggestions were made to enhance their qualities.


2014 ◽  
Vol 13 (2) ◽  
pp. 587-599 ◽  
Author(s):  
A. I. A. Soppe ◽  
S. G. J. Heijman ◽  
I. Gensburger ◽  
A. Shantz ◽  
D. van Halem ◽  
...  

The need to improve the access to safe water is generally recognized for the benefit of public health in developing countries. This study's objective was to identify critical parameters which are essential for improving the performance of ceramic pot filters (CPFs) as a point-of-use water treatment system. Defining critical production parameters was also relevant to confirm that CPFs with high-flow rates may have the same disinfection capacity as pots with normal flow rates. A pilot unit was built in Cambodia to produce CPFs under controlled and constant conditions. Pots were manufactured from a mixture of clay, laterite and rice husk in a small-scale, gas-fired, temperature-controlled kiln and tested for flow rate, removal efficiency of bacteria and material strength. Flow rate can be increased by increasing pore sizes and by increasing porosity. Pore sizes were increased by using larger rice husk particles and porosity was increased with larger proportions of rice husk in the clay mixture. The main conclusions: larger pore size decreases the removal efficiency of bacteria; higher porosity does not affect the removal efficiency of bacteria, but does influence the strength of pots; flow rates of CPFs can be raised to 10–20 L/hour without a significant decrease in bacterial removal efficiency.


2013 ◽  
Vol 316-317 ◽  
pp. 214-218 ◽  
Author(s):  
Yi Zhao ◽  
Fang Ming Xue ◽  
Yuan Shao

A novel wet process has been developed to simultaneously remove NO, SO2 and Hg0 from flue gas. According to the conditions of the bubbling reactor, diperiodatocuprate (Ⅲ) coordination ion solution was prepared with CuSO4•5H2O, KIO4, K2S2O8, and KOH, and the effects of the various influencing factors, such as diperiodatocuprate (Ⅲ) coordination ion solution concentration, reaction temperature, solution pH on removal efficiencies were investigated. The removal efficiencies of 98% for SO2, 90% for Hg0 and 56.8% for NO were obtained, respectively, under the optimal experimental conditions, in which diperiodatocuprate (Ⅲ) coordination ion solution concentration was 6 mmol /L, the reaction temperature was 323 K, and the solution pH was 9.0. That [Cu(OH)2(H3IO6)]- was the main existing form of the absorbent at the optimal experimental conditions was confirmed by calculating the concentration ratios of IO4- and its dissociation products / [IO4-]ex under different pH, and thereby simultaneous removal mechanism for SO2, NO and Hg0 was proposed.


Sign in / Sign up

Export Citation Format

Share Document