Research on Mechanical Dynamics in DC Servo Motor Adjustment System Based on Applied Technology

2014 ◽  
Vol 908 ◽  
pp. 256-259
Author(s):  
Hong Ying Wang ◽  
Bin Liu

This article has made the mathematical model and simulation, and provides the reliable theory basis for practical application of speed adjustment, through the research on DC servo motor adjustment system, and analysis of dynamic and static characteristics of Single loop with current positive feedback and voltage negative feedback speed adjustment system.

2020 ◽  
Vol 30 (11) ◽  
pp. 2050062
Author(s):  
João Angelo Ferres Brogin ◽  
Jean Faber ◽  
Douglas Domingues Bueno

Epilepsy affects about 70 million people in the world. Every year, approximately 2.4 million people are diagnosed with epilepsy, two-thirds of them will not know the etiology of their disease, and 1% of these individuals will decease as a consequence of it. Due to the inherent complexity of predicting and explaining it, the mathematical model Epileptor was recently developed to reproduce seizure-like events, also providing insights to improve the understanding of the neural dynamics in the interictal and ictal periods, although the physics behind each parameter and variable of the model is not fully established in the literature. This paper introduces an approach to design a feedback-based controller for suppressing epileptic seizures described by Epileptor. Our work establishes how the nonlinear dynamics of this disorder can be written in terms of a combination of linear sub-models employing an exact solution. Additionally, we show how a feedback control gain can be computed to suppress seizures, as well as how specific shapes applied as input stimuli for this purpose can be obtained. The practical application of the approach is discussed and the results show that the proposed technique is promising for developing controllers in this field.


2012 ◽  
Vol 195-196 ◽  
pp. 1095-1101
Author(s):  
Le Luo ◽  
Lan Gao ◽  
Liang Chen ◽  
Liang Hu

This paper analyzes the characteristics of marine power station. The mathematical model and simulation model of synchronous generators AVR+PSS excitation control system was built. At last the simulation test of suddenly add load was did in MATLAB/simulink environment. The result shows that the excitation control system has well stability, rapidity and some robustness.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2866
Author(s):  
Jintong Liu ◽  
Anan Zhao ◽  
Piao Wan ◽  
Huiyue Dong ◽  
Yunbo Bi

Interlayer burrs formation during drilling of stacked plates is a common problem in the field of aircraft assembly. Burrs elimination requires extra deburring operations which is time-consuming and costly. An effective way to inhibit interlayer burrs is to reduce the interlayer gap by preloading clamping force. In this paper, based on the theory of plates and shells, a mathematical model of interlayer gap with bidirectional clamping forces was established. The relationship between the upper and lower clamping forces was investigated when the interlayer gap reaches zero. The optimization of the bidirectional clamping forces was performed to reduce the degree and non-uniformity of the deflections of the stacked plates. Then, the finite element simulation was conducted to verify the mathematical model. Finally, drilling experiments were carried out on 2024-T3 aluminum alloy stacked plates based on the dual-machine-based automatic drilling and riveting system. The experimental results show that the optimized bidirectional clamping forces can significantly reduce the burr heights. The work in this paper enables us to understand the effect of bidirectional clamping forces on the interlayer gap and paves the way for the practical application.


2010 ◽  
Vol 37-38 ◽  
pp. 234-237
Author(s):  
Xiao Jing Wang ◽  
Jun Peng Shao ◽  
Guang Bin Yu

In order to improve the low speed stationary of continuous rotary electro-hydraulic servo motor and avoid the pressure impact in the sealed cavity during the oil distributing, this paper designed the shape of buffer groove, established the mathematical model of pressure gradient, and analyzed change law of sealed cavity pressure gradient under different dimension of buffer groove. The pressure field distribution of sealed cavity was studied in certain radial and axial gap, and it is validated the dimension of buffer groove is rational, which lays foundation for structure design and experimental research of large displacement servo motor.


2012 ◽  
Vol 271-272 ◽  
pp. 1178-1182
Author(s):  
Juan Juan Xing

The paper uses the object-oriented modeling method to analysis the hydraulic AGC system and the operation mechanism about a strip mill. It discusses the Coulomb force and roll eccentricity which usually were ignored on rolling process. And improves the mathematical model that reflect the actual AGC system. By simulation, we compared it with the actual rolling process and verified the correction of the mathematical model. And, it will make the good foundation for on-the-spot practical application.


2020 ◽  
Author(s):  
I.I. Krasikov ◽  
A. N. Kulemin

The digital twin is widely known as a tool for digitalization of a product, but there is no common definition concerning this term. This article discusses the definition and utilization of digital twin. Areas of use, it’s implementation in the product lifecycle and most importantly it’s benefits. The lack of a standardized concept of a digital  twin leads to a misunderstanding between mathematical models and digital twin. Several definitions of digital twin were analyzed and compared with the definition of mathematical model and simulation modelling. The basic concept of areas of use for digital twin is introduced. The differences and similarities between the two definitions were found. The article aims first of all to help the management of digital twins in practical application. Keywords: Digital twin, Mathematical modelling, Mathematical model, Lifecycle of a product, Simulation modelling, Practical use of digital twin, Difference between the digital twin and mathematical model, Simulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Shanhui Liu ◽  
Xuesong Mei ◽  
Jian Li ◽  
Li'e Ma

In the latest type of gravure printing machines referred to as the shaft-less drive system, each gravure printing roller is driven by an individual servo motor, and all motors are electrically synchronized. The register error is regulated by a speed difference between the adjacent printing rollers. In order to improve the control accuracy of register system, an accurate mathematical model of the register system should be investigated for the latest machines. Therefore, the mathematical model of the machine directional register (MDR) system is studied for the multicolor gravure printing machines in this paper. According to the definition of the MDR error, the model is derived, and then it is validated by the numerical simulation and experiments carried out in the experimental setup of the four-color gravure printing machines. The results show that the established MDR system model is accurate and reliable.


2014 ◽  
Vol 852 ◽  
pp. 665-670
Author(s):  
Jin Lin Wu ◽  
Li Xin Zhang ◽  
Jun Zhi Yu ◽  
Wei Bing Wang ◽  
Jia Hua Zhang

This paper proposes a hydraulic sleepless speed system for a invariable fertilizing application based on PLC, in order to enhance the stability of the hydraulic sleepless speed system and eventually achieve precise fertilizing. With particular emphasis on the stability of the hydraulic circuit and the actuation control method, mathematical model and simulation model for hydraulic sleepless speed system are established. More specifically, hydraulic sleepless speed system with stable oil circuit and oil pressure sensor is designed to ensure hydraulic system stability, while PID control algorithm is employed to compensate transmission error according to the mathematical model. The hydraulic sleepless speed system is then simulated in different PID control parameters. Simulations show that the results are reasonable and applicable, providing some theoretical guidance to the characteristics anticipation and test of hydraulic sleepless speed system. It is also found that when the PID parameter is chosen as =10, =0.08, =8, the fertilizing precision will be satisfied.


2014 ◽  
Vol 686 ◽  
pp. 601-604
Author(s):  
Ling Xi Zhang ◽  
Hang Zhang ◽  
Xu Yun Zhu ◽  
Jian Ping Wang ◽  
Dong Yue Liu

By means of Hogarth curve theory and combined with mathematical model establishment process, equations of drawing Hogarth curve were built and the curve images were restored by mathematical software in this paper, as the evaluation standard of curve aesthetics in fashion design. In the practical application, one can compare the designed curves with the mathematical model of Hogarth curve: the higher degree of fitting, the more beautiful the curve modeling is. This method has good guidance significance in future fashion design and clothing purchase.


Sign in / Sign up

Export Citation Format

Share Document