Optimum Heat Treatment of Extrusion Die Steel

2014 ◽  
Vol 911 ◽  
pp. 215-219 ◽  
Author(s):  
Sayyad Zahid Qamar

Commercial hot extrusion is a billet-by-billet cyclic process, with high thermal and mechanical stresses generated in the die set. The die is a costly piece of equipment, and its long service life is essential for profitable operation. Extrusion dies primarily fail by fracture, wear, and plastic deformation. To avoid early failure, it is essential to have an optimum combination of toughness and hardness in the die. This combination can be achieved through a judicious mix of heat treatment and surface hardening. Experiments were conducted to determine mechanical properties of H13 steel after various heat treatment sequences. Heat treatment strategy is described in detail, and effect of different tempering temperatures on fracture toughness and hardness of the tool steel is reported. Changes in mechanical properties are also related to the variation in microstructure. For use in commercial hot extrusion dies, optimum tempering temperature for H13 steel was found to be near 525-600oC, for the best combination of toughness and hardness.

Alloy Digest ◽  
1989 ◽  
Vol 38 (2) ◽  

Abstract UNS T20819 is a hot-work tool and die steel that is characterized by excellent resistance to shock and abrasion at elevated temperatures. This steel provides relatively high toughness and outstanding resistance to heat checking and softening at elevated temperatures. Among its many applications are hot-punch tools, forging dies and inserts, brass extrusion dies, permanent molds for brass casting and hot-extrusion die inserts for steel. This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: TS-496. Producer or source: Tool steel mills.


2018 ◽  
Vol 284 ◽  
pp. 351-356 ◽  
Author(s):  
Mikhail V. Maisuradze ◽  
Maksim A. Ryzhkov

The high strength aerospace steel alloyed with Cr, Mn, Si, Ni, W and Mo was studied. The austenite transformations under continuous cooling conditions were investigated using the dilatometer analysis at the cooling rates 0.1...30 °C/s. The mechanical properties of the studied steel were determined after the conventional quenching and tempering heat treatment. The dependences of the mechanical properties on the tempering temperature were obtained. The novel quenching and partitioning heat treatment was applied to the steel under consideration. The microstructure and the mechanical properties were studied after three different modes of the quenching and partitioning (QP) treatment: single-stage QP, two-stage QP and single-stage QP with subsequent tempering (QPT).


2008 ◽  
Vol 367 ◽  
pp. 177-184 ◽  
Author(s):  
D. Tseronis ◽  
I.F. Sideris ◽  
C. Medrea ◽  
Ionel Chicinaş

This paper studies the fracture surfaces of an aluminium hot extrusion die that broke down during operation. The die was constructed, from H13 steel and was intended for the production of 60,000 Kg of aluminium profile. The male part fractured during operation after the production of 500 Kg profile. Initially, the machine and thermal treatments that were applied for construction of the die were collected and studied. The die was carefully inspected visually with a stereoscope. The fracture surfaces, some cracks, and the structure that was not affected by the failure, were investigated by optical microscopy. The thickness, quality and homogeneity of the nitrated layers were inspected. Additional information concerning the fracture was obtained by examining a primary crack using a scanning electron microscope and chemical analysis of the material was made using EDX attachment. The paper reports on some interesting observations relating to the fractured component, the type of the fractures, and the quality of the heat treatments, and presents some of the probable causes that led to the premature failure of the die.


2013 ◽  
Vol 765 ◽  
pp. 496-500 ◽  
Author(s):  
Dawid Kapinos ◽  
Marcin Szymanek ◽  
Bogusław Augustyn ◽  
Maciej Gawlik

The article presents the change in mechanical properties of AlZn9Mg2.5Cu1.8 alloy resulting from the process of solution heat treatment and aging. The heat treatment was performed on a unique UMSA (Universal Metallurgical Simulator and Analyzer) device. The aim of the study was to determine optimum heat treatment parameters for the tested alloy of ultrafine grain structure obtained by Rapid Solidification (RS). To achieve this purpose, heat treatment to the T4 and T6 condition was carried out. The solution heat treatment was carried out at a constant temperature of 460 °C for 2 hours, while the time - temperature parameters of the aging process varied. The treatment undertaken resulted in improved mechanical properties.


Author(s):  
Syed Sohail Akhtar ◽  
Abul Fazal M. Arif

One of the utmost challenges of hot aluminum extrusion is to design the die cavities with sharp corners (used to extrude thin-walled profiles) by considering the effective nitriding surface treatment of the die bearing surface in terms of nitride layer uniformity. In the present study, various AISI H13 steel samples (having commonly used profile geometric features) are manufactured using wire electro-discharge machining (EDM) and subsequently nitrided using two-stage controlled nitriding treatment. As a special case, corner features are investigated in terms of compound and nitride layers formation using optical and scanning electron microscopes. Finite element (FE) code abaqus is used to simulate the nitriding process using mass diffusion analysis in line with experimental set up. Both experimental and numerical results are found in close agreement in terms of nitrogen concentration and corresponding microhardness profiles. Some design modifications are implemented in FE code for corner profile features for uniform nitride layer development. In view of the current results, some design guidelines are suggested for effective and uniform nitride layer formation in order to secure high quality extruded product and extended die life.


2013 ◽  
Vol 765 ◽  
pp. 511-515 ◽  
Author(s):  
Da Quan Li ◽  
Xiao Kang Liang ◽  
Fu Bao Yang ◽  
You Feng He ◽  
Fan Zhang ◽  
...  

The evolution of microstructure and mechanical properties during solution and ageing heat treatment process was studied in terms of a thixo-diecast impeller of 319s aluminium alloy. The cast alloy exhibited a microstructure consisting of primary uniformly distributed in α-Al globules and the eutectics. A series of heat treatment studies were performed to determine optimum heat treatment parameters, in order to achieve fine grain structure, fine silicon particles and optimal precipitate size and distribution. Optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the evolution of microstructure and mechanical properties. The results demonstrate that, the full T6 heat treatments are successfully applied to thixo-diecast 319s impellers. A two-step solution heat treatment is employed to prevent porosity due to overheating. The tensile properties of thixo-diecast 319s impellers were substantially enhanced after T6 heat treatment. The plate-shaped θ′ precipitates and lath-shaped Q′ precipitates are the most effective for precipitation strengthening.


2010 ◽  
Vol 48 (1) ◽  
pp. 28-39
Author(s):  
Yeon-Keun Kim ◽  
Chang-Hee Han ◽  
Jong-Hyuk Baek ◽  
Sung-Ho Kim ◽  
Chan-Bock Lee ◽  
...  

2021 ◽  
Vol 410 ◽  
pp. 221-226
Author(s):  
Mikhail V. Maisuradze ◽  
Maxim A. Ryzhkov ◽  
Dmitriy I. Lebedev

The features of microstructure and mechanical properties of the aerospace high strength steel were studied after the implementation of various heat treatment modes: conventional oil quenching and tempering, quenching-partitioning, austempering. The dependence of the mechanical properties on the tempering temperature was determined. The basic patterns of the formation of mechanical properties during the implementation of isothermal heat treatment were considered. The optimal heat treatment conditions for the studied steel were established.


Sign in / Sign up

Export Citation Format

Share Document