Densification and Corrosion Studies of as-Sintered-Swaged Al Composite Preforms

2014 ◽  
Vol 911 ◽  
pp. 67-71
Author(s):  
Ananthanarayanan Rajeshkannan ◽  
Alok Sharma

The classical P/M technique was used to produce composites of Al-2WC-4Fe3C, Al-2WC-8Fe3C and Al-2WC-12Fe3C and it is further subjected to hot upsetting to evaluate densification and corrosion characteristics.Process parameters such as initial density, preform geometry and deformation media were kept constant to analyse this behaviour. The as-sintered compacts were subjected to swaging to different height strains, thus expected to eliminate residual porositiesout of classical P/M technique consequently improve its densification and corrosion characteristics. As the known limitation of the classical P/M process is the presence of porosity that restricts structural and corrosion related applications. It is observed from the results that strain induced improves the density substantially, which eventually promoted anti-corrosion properties. Further prediction was the addition of carbide particle in pure Al decreases the densification and increases the corrosion rate.

The work was carried on biomedical implants and the selection of correct methods for corrosion studies and study of the corrosion products, electrochemical methods are used to determine the metal and alloys corrosion rate and to characterize the corrosion damage. Microscopy and spectroscopy studies are used for characterization and determination of thickness and nature of the corrosion products.


2021 ◽  
Vol 25 (4) ◽  
pp. 519-527
Author(s):  
A. А. Yakovleva ◽  
E. A. Antsiferov ◽  
S. V. Sadlovsky

This paper investigates the corrosion process of steel St3 protected by latex coating 69Б-2к produced by Kapitel Ltd (Irkutsk). Electrochemical impedance spectroscopy of steel samples with a threefold latex coating was carried out by a PGSTAT302 + FRA2 potentiostat-galvanostat equipped with NOVA 1.8. Corrosion studies were carried out under thermostating (25 ± 0.2°C) of the working environment. The corrosion rate was determined by gravimetric tests with the recording of mass changes over a controlled period of time (up to 10 h). A 3% sodium chloride solution was used as the electrolyte. In most cases, the mechanism of the corrosion process can be reliably described by an equivalent electrochemical circuit with Warburg and Cotangent Hyperbolic elements, which simulates the reaction at the electrodeelectrolyte interface. According to the conducted visual, gravimetric and electrochemical studies of the St3 steel surface protected with the 69B-2k latex coating, the impedance remains almost unchanged for a prolonged period of time. It is obvious that the surface process is associated with the limiting stage of solvent diffusion through the protective layer. Thus, the electrochemically determined corrosion rate was low and amounted to ~ 0.164 mm/year (for reference samples – 0.75 mm / year). Our studies confirmed high protective qualities of latex 69B-2k. The corrosion properties of the coating under study are related to its composition, the components of which not only exhibit good adhesion, but are also active with respect to other interactions, including chemical interactions of the components with each other and with metal surface crystallites. The model calculation of the process, carried out using the developed equivalent electrochemical circuit, describes experimental curves in Nyquist coordinates almost comprehensively.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Nagoor Basha Shaik ◽  
Kedar Mallik Mantrala ◽  
Balaji Bakthavatchalam ◽  
Qandeel Fatima Gillani ◽  
M. Faisal Rehman ◽  
...  

AbstractThe well-known fact of metallurgy is that the lifetime of a metal structure depends on the material's corrosion rate. Therefore, applying an appropriate prediction of corrosion process for the manufactured metals or alloys trigger an extended life of the product. At present, the current prediction models for additive manufactured alloys are either complicated or built on a restricted basis towards corrosion depletion. This paper presents a novel approach to estimate the corrosion rate and corrosion potential prediction by considering significant major parameters such as solution time, aging time, aging temperature, and corrosion test time. The Laser Engineered Net Shaping (LENS), which is an additive manufacturing process used in the manufacturing of health care equipment, was investigated in the present research. All the accumulated information used to manufacture the LENS-based Cobalt-Chromium-Molybdenum (CoCrMo) alloy was considered from previous literature. They enabled to create a robust Bayesian Regularization (BR)-based Artificial Neural Network (ANN) in order to predict with accuracy the material best corrosion properties. The achieved data were validated by investigating its experimental behavior. It was found a very good agreement between the predicted values generated with the BRANN model and experimental values. The robustness of the proposed approach allows to implement the manufactured materials successfully in the biomedical implants.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Jure Voglar ◽  
Živa Novak ◽  
Patricia Jovičević-Klug ◽  
Bojan Podgornik ◽  
Tadeja Kosec

The aim of the study was to evaluate the corrosion properties of three different grades of high-speed steel following a heat treatment procedure involving deep cryogenic treatment after quenching and to investigate how these properties are connected to the microstructure and hardness of the material. The hardness of steels was measured, and microstructural properties were determined through observation of the metallographically prepared steels using scanning electron microscopy. These studies were complemented corrosion evaluation by the use of corrosion potential measurement and linear polarization measurement of steels in a sodium tetraborate buffer at pH 10. The results showed that the deep cryogenic procedure of high-speed steel changed the microstructure and consequently affected the hardness of the investigated steels to different extents, depending on their chemical composition. Corrosion studies have confirmed that some high-speed steels have improved corrosion properties after deep cryogenic treatment. The most important improvement in corrosion resistance was observed for deep cryogenically treated high-speed steel EN 1.3395 (M3:2) by 31% when hardened to high hardness values and by 116% under lower hardness conditions. The test procedure for differentiating corrosion properties of differently heat-treated tool steels was established alongside the investigation.


2018 ◽  
Vol 778 ◽  
pp. 16-21
Author(s):  
Muhammad Mansoor ◽  
Muhammad Kamran Yaseen ◽  
Shaheed Khan

Al-Si eutectic cast alloys are widely used in aeronautical and automobile industries where significantly high strength, toughness and wear resistance are required. This class of cast alloys exhibit relatively low corrosion resistance in brine environments. The mechanical properties of the alloy system mainly depend upon the shape of Si rich eutectic phase, which mainly has acicular geometry. In present research, the effect of modified microstructure of 12 wt. % Si-Al alloy on corrosion behavior was studied. The needle like Si rich eutectic phase was modified to disperse spherical structure using rare earth metal halides. The corrosion rate and pitting behavior of modified and unmodified alloy were evaluated in 3.5% NaCl solution by general corrosion for calculated time. It was observed that the corrosion rate and pitting tendency of modified alloy had been appreciably reduced as compare to unmodified alloy. The improvement of corrosion properties were the attributes of changed morphology and distribution of Si rich eutectic phase.


2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Frank Feyerabend ◽  
Martin Johannisson ◽  
Zhidan Liu ◽  
Regine Willumeit-Römer

AbstractSterilization is a necessary step for all implant materials. Different methods can influence the materials properties. Especially important for magnesium as degradable materials is the determination of the corrosion properties. In this study the influence of 70% ethanol, glutaraldehyde, autoclaving, dry heat, UV-, gamma- and electron beam-irradiation on mechanical and corrosion parameters were analyzed. As mechanical parameters hardness and grain size were determined. The corrosion rate under physiological conditions, weight of the corrosion layer and corrosion morphology was determined. It could be demonstrated that irradiation treatments and 70% ethanol are suitable methods, as they decrease the corrosion rate. Heat-introducing methods (autoclaving and dry heat) acted as incomplete ageing treatments on this alloy and therefore increased the corrosion rate. Furthermore, osmolality showed a better correlation to the actual corrosion rate than the pH. Therefore an optimum ratio between alloying system, implant and sterilization method has to be established, depending on the intended application.


Author(s):  
Dayanidhi Krishana Pathak ◽  
Pulak Mohan Pandey

Biodegradable zinc (Zn) has shown great potential in the area of biomedical applications. Though, the mechanical properties are decisive for the use of Zn for orthopedic and cardiovascular applications. Consequently, one needs to focus on improving the mechanical properties of Zn for its suitability in biomedical applications. Alloying of essential elements of the human body resulted in enhancement of Zn’s mechanical properties in recent years. The corrosion rate of pure Zn is ideal; however, the addition of other elements has resulted in a loss of its ideal corrosion rate. The inclusion of hydroxyapatite (HA) and iron (Fe) in Zn has also been reported in improving the mechanical properties. Hence, a need is raised for the development of a model which can predict the corrosion rate after adding HA along with Fe in Zn. In this research work, empirical based modeling is proposed to predict the corrosion rate, which incorporates the outcome of addition of Fe and HA in Zn. The Zn based materials were fabricated with the help of microwave sintering for developing the empirical model. The corrosion properties of the materials were assessed through a potentiodynamic polarization test in a simulated body fluid solution. The enhanced corrosion rate was attained with the rise in HA (wt%) and Fe (wt%) in Zn. An empirical correlation was established between the influencing controlling parameters (i.e., corrosion current, equivalent weight, and material density) of corrosion rate. Confirmation experiments were conducted to validate the developed model, and the highest error of 6.12% was obtained between the experimental and predicted values exhibiting the efficaciousness of the proposed model.


2019 ◽  
Vol 810 ◽  
pp. 52-57
Author(s):  
Josef Hlinka ◽  
Ludek Dluhoš ◽  
Kateřina Dědková

This paper aims to comparison of corrosion properties of two titanium alloys with different grain size. These alloys are commonly used in implantology for manufacturing long term body hard tissues replacements. Surfaces of tested samples were also electrochemically anodized using fluorine ions rich environment: the main reason for anodization was to create surfaces with highly bioactive properties which can intensify healing process and result into better bonding between body tissues when they are used in implantology. It was found by direct electrochemical methods that difference of corrosion rate between anodized and non-anodized samples was not significant. Anodization results positively influenced decreasing of corrosion rate when samples were tested in aerated physiological solution (0,9 wt. % NaCl/water). Type of bonding between implant and surrounding tissue may be also predetermined by value of contact angle of tested sample and water droplet on its surface. This paper confirmed that anodization increases wettability of tested samples and lower the contact angle to ~60°. According to these results anodization process may be recommended as a profitable treatment for surfaces of tissue replacements made from titanium.


2011 ◽  
Vol 690 ◽  
pp. 417-421 ◽  
Author(s):  
Lei Yang ◽  
Frank Feyerabend ◽  
Karl Ulrich Kainer ◽  
Regine Willumeit ◽  
Norbert Hort

The addition of rare earth elements (REE) is an effective way to improve the corrosion properties of magnesium alloys. Dysprosium has a very high solubility in Mg (25.3 wt.% at 561 °C) and could therefore be a promising alloying element for Mg based implants. In this study, four binary Mg-xDy (x=5, 10, 15 and 20 in wt.%) alloys were prepared by permanent mould direct chill casting. Microstructure and Dy distribution were investigated using optical microscope and EDX analysis. Corrosion rate was measured with hydrogen evolution method and corrosion morphology was observed after immersion for different time in 0.9 wt% NaCl solution with optical and SEM. The results show that with the increase of Dy, the amount of Dy in Mg matrix and area of Dy segregation are both increased. At the same time, the amount of second phase is also increased. Filiform corrosion is reduced while pitting corrosion is increased with the increment of Dy. As a result, lowest corrosion rate is obtained at Mg-10Dy alloy.


2020 ◽  
Vol 978 ◽  
pp. 499-504 ◽  
Author(s):  
Akhya Kumar Behera ◽  
Archana Mallik

In this report, graphene sheets used as reinforcements for improvement of anti-corrosion properties have been synthesized by electrochemical intercalation and exfoliation process. The (001) and (002) plane of graphene sheets at a 2θ angle of 13.2 and 26.13 confirmed by X-ray diffraction pattern. High-resolution TEM confirms 8-12 layers of graphene present in the final products. The as-received graphene sheets have been used as reinforcement with copper matrix to synthesize Cu-Gr nanocomposite by electrodeposition method. The results and investigations of Cu-Gr composite thin films deposited from the bath containing 0.1g/L and 0.5g/L graphene concentrations with acidic copper sulfate solution have been compared. The surface morphology and roughness of composites were studied by SEM, AFM and surface profiler. The presence of graphene in Cu-Gr nanocomposite confirmed by EDS analysis. It was observed that the reinforcement particle has increased the mechanical properties of Cu-Gr composite (by 30%) with the addition to the copper matrix. The corrosion resistance of sample was studied by Tafel extrapolation method in standard borate buffer solution. For nanocomposites of 0.5g/L graphene, the values of Tafel constants are, βa=177.37 mv, βc=138.51 mv, Icorr = 9.3165×10-7Amp/cm2, Ecorr = -0.051 volts and corrosion rate 0.01028 mm/a as comparison to the corrosion rate of pure electroplated copper of a value of 0.029 mm/a. The corrosion rate of 0.5g/L Cu-Gr composite was found to be decreased by 2.7 times as compared to pure copper thin films. The structure of the films before and after corrosion was also analyzed to co-relate the electrochemical and structural relationship.


Sign in / Sign up

Export Citation Format

Share Document