scholarly journals Analysis of Recrystallization and Strain-Induced Precipitation on High Nb- and N-Bearing Austenitic Stainless Steel

2014 ◽  
Vol 922 ◽  
pp. 700-705 ◽  
Author(s):  
Mariana B.R. Silva ◽  
J. Gallego ◽  
Jose María Cabrera ◽  
O. Balancin ◽  
Alberto Moreira Jorge

The mechanical properties and corrosion resistance of stainless steels are due to the combined effect of chemical composition and thermomechanical processing. The objective of this study was to investigate the interaction precipitation-recrystallization of an austenitic steel with high additions of nitrogen and niobium through continuous-cooling multiple deformation hot-torsion tests. Samples were heated up to a soaking temperature of 1250oC and kept at this temperature for 5 minutes, and then deformed during cooling. The deformation pass was 0.3 with a strain rate of 1 s-1and interpass times of 20 or 50 s. The evolution of the microstructure was investigated by optical, EBSD and transmission electron microscopy, using thin foils and carbon extraction replica samples. The results showed that some precipitates were not dissolved after reheating and the presence of niobium-and chromium-rich particles after processing was confirmed. The strain accumulation with the interpass time of 20 s yielded finer precipitation and improved grain refinement than observed after 50 s. Some interaction of the precipitates with dislocations and grain boundary could be evidenced.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Trevor J. Ballard ◽  
John G. Speer ◽  
Kip O. Findley ◽  
Emmanuel De Moor

AbstractA double-twist torsion testing technique has been developed using a 316 stainless steel as an exemplar material to experimentally assess recrystallization behavior and determine the non-recrystallization temperature (Tnr). This new method was compared to the traditional methods of double-hit compression and multi-step hot torsion testing. The double-twist torsion test allows Tnr to be related to the extent of austenite recrystallization through measurements of fractional softening while accommodating multiple deformation and recrystallization steps with a single specimen. The double-twist torsion test resulted in average Tnr values similar to those determined with multi-step hot torsion, and a partially recrystallized microstructure was observed in the vicinity of the calculated Tnr for all three methods. The ability of the double-twist torsion test to relate the experimental Tnr to the evolution of austenite recrystallization via fractional softening measurements while incorporating effects of multiple deformation steps offers an advantage over traditional methods for quantifying changes in austenite recrystallization during thermomechanical processing.


Author(s):  
E. U. Lee ◽  
P. A. Garner ◽  
J. S. Owens

Evidence for ordering (1-6) of interstitial impurities (O and C) has been obtained in b.c.c. metals, such as niobium and tantalum. In this paper we report the atomic and microstructural changes in an oxygenated c.p.h. metal (alpha titanium) as observed by transmission electron microscopy and diffraction.Oxygen was introduced into zone-refined iodide titanium sheets of 0.005 in. thickness in an atmosphere of oxygen and argon at 650°C, homogenized at 800°C and furnace-cooled in argon. Subsequently, thin foils were prepared by electrolytic polishing and examined in a JEM-7 electron microscope, operated at 100 KV.


Author(s):  
W. D. Cooper ◽  
C. S. Hartley ◽  
J. J. Hren

Interpretation of electron microscope images of crystalline lattice defects can be greatly aided by computer simulation of theoretical contrast from continuum models of such defects in thin foils. Several computer programs exist at the present time, but none are sufficiently general to permit their use as an aid in the identification of the range of defect types encountered in electron microscopy. This paper presents progress in the development of a more general computer program for this purpose which eliminates a number of restrictions contained in other programs. In particular, the program permits a variety of foil geometries and defect types to be simulated.The conventional approximation of non-interacting columns is employed for evaluation of the two-beam dynamical scattering equations by a piecewise solution of the Howie-Whelan equations.


Author(s):  
J. R. Michael ◽  
K. A. Taylor

Although copper is considered an incidental or trace element in many commercial steels, some grades contain up to 1-2 wt.% Cu for precipitation strengthening. Previous electron microscopy and atom-probe/field-ion microscopy (AP/FIM) studies indicate that the precipitation of copper from ferrite proceeds with the formation of Cu-rich bcc zones and the subsequent transformation of these zones to fcc copper particles. However, the similarity between the atomic scattering amplitudes for iron and copper and the small misfit between between Cu-rich particles and the ferrite matrix preclude the detection of small (<5 nm) Cu-rich particles by conventional transmission electron microscopy; such particles have been imaged directly only by FIM. Here results are presented whereby the Cu Kα x-ray signal was used in a dedicated scanning transmission electron microscope (STEM) to image small Cu-rich particles in a steel. The capability to detect these small particles is expected to be helpful in understanding the behavior of copper in steels during thermomechanical processing and heat treatment.


2007 ◽  
Vol 1026 ◽  
Author(s):  
Pascale Bayle-Guillemaud ◽  
Aurelien Masseboeuf ◽  
Fabien Cheynis ◽  
Jean-Christophe Toussaint ◽  
Olivier Fruchart ◽  
...  

AbstractThis paper presents investigations of magnetization configuration evolution during in-situ magnetic processes in materials exhibiting planar and perpendicular magnetic anisotropy. Transmission electron microscopy has been used to perform magnetic imaging. Fresnel contrasts in Lorentz Transmission Electron Microscopy (LTEM) and phase retrieval methods such as Transport of Intensity Equation (TIE) solving or electron holography have been implemented. These techniques are sensitive to magnetic induction perpendicular to the electron beam and can give access to a spatially resolved (resolution better than 10 nm) mapping of magnetic induction distribution and could be extended to dynamical studies during in-situ observation. Thin foils of FePd alloys with a strong perpendicular magnetic anisotropy (PMA) and self-assembled Fe dots are presented. Both are studied during magnetization processes exhibiting the capacities of in-situ magnetic imaging in a TEM.


2017 ◽  
Vol 62 (1) ◽  
pp. 321-326 ◽  
Author(s):  
J. Górka

Abstract This study presents tests concerned with welding thermal process-induced precipitation processes taking place in 10 mm thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP) with accelerated cooling. The thermomechanical processing of steel S700MC leads to its refinement, structural defects and solutioning with hardening constituents. Tests of thin foils performed using a transmission electron microscope revealed that the hardening of steel S700MC was primarily caused by dispersive (Ti,Nb)(C,N) precipitates (being between several and less than twenty nanometers in size). In arc welding, depending on a welding method and linear energy, an increase in the base material in the weld is accompanied by the increased concentration of hardening microagents in the weld. The longer the time when the base material remains in the liquid state, the greater the amount of microagents dissolved in the matrix. During cooling, such microagents can precipitate again or remain in the solution. An increase in welding linear energy is accompanied by an increase in the content of hardening phases dissolved in the matrix and, during cooling, by their another uncontrolled precipitation in the form of numerous fine-dispersive (Ti,Nb)(C,N) precipitates of several nm in size, leading to a dislocation density increase triggered by type 2 internal stresses.


2012 ◽  
Vol 706-709 ◽  
pp. 1586-1591 ◽  
Author(s):  
Sabine Zamberger ◽  
Ernst Kozeschnik

In the present work, the precipitation behavior of a V-microalloyed, quenched and tempered steel with 0.3wt % C is investigated experimentally and by computer simulation. The specimens are analyzed by means of transmission electron microscopy using selected area diffraction (SAD) and energy dispersive x-ray spectroscopy (EDX). The analysis is done on electropolished foils and on extraction replica. The numerical simulation is performed with the thermokinetic software package MatCalc, where the precipitation kinetics is examined for the experimentally applied thermo-mechanical cycles. Good agreement between experiment and simulation is obtained and the experimentally observed precipitate microstructure can be well explained on the basis of these simulations.


Author(s):  
S.V.S. Narayana Murty ◽  
Sushant K. Manwatkar ◽  
P. Ramesh Narayanan

Microstructure plays an important role in obtaining the desired properties in metallic materials in general and aluminum alloys in particular. Mechanical properties of aluminum alloys can be significantly altered by changing the microstructure. No other alloy system can boast of as many temper conditions as aluminum alloys. With the progress in the understanding of microstructure–mechanical property relationships in these materials, “tailor made” alloys to meet specific demands are being industrially developed. The broad spectrum of aluminum alloys in wide range of temper conditions offer materials with widely varying mechanical properties for structural designers. In order to select aluminum alloys with the desired properties for the intended application, it is essential to understand the role of microstructure under actual service conditions. It is in this context “Metallography of aluminum alloys” becomes very important. This chapter provides an insight in to the microstructural evolution of aluminum alloys from the as-cast condition to the final product. Typical examples of microstructural evolution in different aluminum alloys under various thermomechanical conditions are presented here. An atlas of microstructures of commercial and experimental wrought and cast aluminum alloys is presented in an appendix to this book. This appendix includes optical photomicrographs of both cast and wrought alloys and scanning electron micrographs of polished surfaces as well as fracture surfaces of various aluminum alloys as well as transmission electron micrographs as separate annexure. Readers are encouraged to go through the optical microstructures and fractographs along with this chapter for better understanding of the evolution of microstructure as a function of alloying additions, thermomechanical processing conditions, and fracture behavior under tension.


1991 ◽  
Vol 243 ◽  
Author(s):  
Jhing–Fang Chang ◽  
Chi Kong Kwok ◽  
Seshu B. Desu

AbstractBoth La and Nd–doped PZT, i.e., PLZT and PNZT, ferroelectric thin films were prepared by the metalorganic deposition (MOD) process. The precursor solutions used were derived from lead acetate, lanthanum acetylacetonate, neodymium acetate, zirconium n–propoxide, and titanium iso–propoxide. The dopant concentration of the films analyzed by electron microprobe indicated a one–to–one correspondence between film composition and the composition of the precursor from which the film was made. In this study, the effects of Nd and La dopants in PZT films on Curie temperature was determined by in–situ hot–stage TEM and compared with those of bulk materials. Lattice parameter and phase transformation were determined by both X–ray and electron diffraction. Our observations were: (1) Curie temperature decreases with increasing dopant concentration for both thin foils and bulk ceramics, (2) for a given dopant concentration, Curie temperature and crystal tetragonality of PNZT thin foils is lower than those of PLZT samples, (3) Curie temperature of thin foils was found to be less than those of the corresponding bulk materials, and (4) ferroelectric domains is easily observed in both PLZT and PNZT TEM specimens prepared by the spin–coating method.


Sign in / Sign up

Export Citation Format

Share Document