Properties of Mortar Incorporating Ground Dune Sand as Cement Replacement Material

2014 ◽  
Vol 925 ◽  
pp. 334-338
Author(s):  
Omer Abdalla Alawad ◽  
Abdulrahman Alhoziamy ◽  
Mohd Saleh Jaafar ◽  
Abdulaziz Al-Negheimish ◽  
Farah Noor Abdul Aziz

Supplementary cementitious materials provide economic and environmental advantages in concrete industry. In this study, natural ground dune sand (GDS) was used as cement replacement material to fabricate mortar specimens. Ordinary Portland cement was replaced by GDS at five levels of replacement (0, 10, 20, 30, and 40 %) by weight. The cast mortar specimens were cured under normal and autoclave curing conditions. Compressive strength, drying shrinkage and resistance to sulfate attack were investigated. Results showed that the compressive strength under normal curing decreased as the level of replacement increased. However, under autoclave curing compressive strength increased as the content of GDS increased with 30% being the optimum replacement level. Autoclave curing decreased the drying shrinkage of plain and GDS blended mixtures by about 70% compared to control mixture cured under normal curing. Up to 270 days, no sulfate attack was observed on the GDS blended mixtures regardless of the replacement level. The use of GDS to reduce the Portland cement consumption can have a significant impact on the sustainability and economy of concrete construction.

Author(s):  
Diego Jesus de Souza ◽  
Marcelo Henrique Farias de Medeiros ◽  
Juarez Hoppe Filho

ABSTRACT: Sulfate attack is a term used to describe a series of chemical reactions between sulfate ions and hydrated compounds of the hardened cement paste. The present study aims to evaluate the physical (linear expansion, flexural and compressive strength) and mineralogical properties (X-ray diffraction) of three different mortar compositions (Portland Cement CPV-ARI containing silica fume and rice husk ash, in both cases with 10% replacement of the cement by weight) against sodium and magnesium sulfate attack (concentration of SO42- equal to 0.7 molar). The data collected indicate that the replacing the cement by the two siliceous supplementary cementitious materials (SCMs) generate similar results, both SCMs were able to mitigate the effects of the sodium sulfate attack in both physical and chemical characteristics, however, both materials increase the deterioration (i.e. compressive strength) when exposed to MgSO4 solution.


Author(s):  
Khashayar Jafari ◽  
Farshad Rajabipour

Supplementary cementitious materials (SCMs) are natural or industrial by-product materials which are used to improve the performance, durability, and sustainability of concrete mixtures. Motivated by the recent reports on shortage of conventional SCMs, impure calcined clays (CCs) are receiving attention as abundant alternative pozzolans for concrete. In this study, a clay slurry resulting from washing aggregates in a commercial sand and gravel pit was investigated. This source clay was dried and calcined, and the properties and pozzolanic performance of the resulting CC was evaluated. It was observed that despite having a large (>50%wt.) inert quartz content, the CC met all ASTM C618-19 (AASHTO M295) requirements for natural pozzolan. A pavement-grade concrete mixture containing 20%CC as a cement replacement (by weight) produced desired workability and fresh and hardened air content. Strength development was slightly below the control. The use of CC improved the durability of concrete with respect to chloride penetration, alkali–silica reaction, and drying shrinkage in comparison with a control (100% Portland cement) mixture. In addition, ternary limestone-calcined clay–cement and slag-calcined clay–cement mortar mixtures showed excellent strength development while replacing nearly 50% of the Portland cement.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4248
Author(s):  
Xingxing Li ◽  
Ying Ma ◽  
Xiaodong Shen ◽  
Ya Zhong ◽  
Yuwei Li

The utilization of coral waste is an economical way of using concrete in coastal and offshore constructions. Coral waste with more than 96% CaCO3 can be ground to fines and combined with supplementary cementitious materials (SCMs) such as fly ash, silica fume, granulated blast furnace slag in replacing Portland cement to promote the properties of cement concrete. The effects of coral sand powder (CSP) compared to limestone powder (LSP) blended with SCMs on hydration and microstructure of mortar were investigated. The result shows CSP has higher activity than LSP when participating in the chemical reaction. The chemical effect among CSP, SCMs, and ordinary Portland cement (OPC) results in the appearance of the third hydration peak, facilitating the production of carboaluminate. CSP-SCMs mortar has smaller interconnected pores on account of the porous character of CSP as well as the filler and chemical effect. The dilution effect of CSP leads to the reduction of compressive strength of OPC-CSP and OPC-CSP-SCMs mortars. The synergic effects of CSP with slag and silica fume facilitate the development of compressive strength and lead to a compacted isolation and transfer zone (ITZ) in mortar.


2014 ◽  
Vol 20 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Abdulrahman Alhozaimy ◽  
Omer Abdalla Alawad ◽  
Mohd Saleh Jaafar ◽  
Abdulaziz Al-Negheimish ◽  
Jamaloddin Noorzaei

The process of Portland cement production is associated with high consumption of energy and resources. Therefore, there is a need to replace the Portland cement with environmental friendly materials. This study was conducted to determine the feasibility of using ground dune sand as cement replacement materials under different curing conditions. Portland cement was replaced by ground dune sand at five levels of replacement (0–40% by weight). The compressive strength of mortar under standard and autoclave curing conditions and the influence of different autoclave temperatures and durations were investigated. The microstructure of selected mixtures was analyzed by XRD and SEM. Results showed that the compressive strength under the standard curing decreased as the level of replacement increased. However, under autoclave curing compressive strength increased as the content of ground dune sand increased. XRD and SEM revealed the absence of calcium hydroxide and the formation of secondary calcium silicate hydrate. The improvement of compressive strength and the absence of calcium hydroxide under autoclave curing indicated that the pozzolanic reaction between silica of dune sand and calcium hydroxide occurred.


Author(s):  
Njarazo Rakotondrabezaharinoro ◽  
Moutari Ado ◽  
Willy Hermann Juimo Tchamdjou

In many developing country’s mining exploitations are the main activities sources, and its exploitation is generating many mining wastes and environmental impacts. In order to use these waste, an innovative powder and aggregate were designed, aimed at providing alternative materials by cementitious supplementary materials and sand in Portland cement mortars. This paper investigates the use of raw mineral waste from some developing countries, namely Granite Residue (GR), from Niger, Mining Tailings (MT), from Madagascar, and red Volcanic Scoria (VS), from Cameroon as building materials. These raw materials were valorized as supplementary cementitious materials (GR powder, MS powder and VS powder) and as sand (GR sand and VS sand). GR sand and VS sand were used by 100% replacement of standard sand and GR powder, MS powder and VS powder were used by 5, 15, 25, or/and 35% cement replacement. Physical properties and mechanical properties of raw materials used and mortars obtained were investigated. The effects of these raw materials on properties of mortar mixes were studied and reported. Results show that, with sand from raw mineral waste materials, the compressive and flexural strengths of the produced mortar represented up than 70% and up than 85% respectively in comparison with mortar produce with siliceous standard sand. The reduction of strength of mortar with raw powder as ordinary Portland cement replacement is generally smaller than replacement ratio. Activity index of each raw powder is about 75% for ratio replacement of 5, 15 and 25%. Particle size distribution of raw powder and sand have an influence on the workability and mechanical properties of mortars. In conclusion, the use of raw mineral waste as a raw powder or as sand for mortar production presents an economical and environmental advantage for developing countries where mining exploitations are abundant.


2020 ◽  
Vol 14 (1) ◽  
pp. 6443-6451 ◽  
Author(s):  
Chow Wee Kang ◽  
Cheah Chee Ban ◽  
Oo Chuan Wei ◽  
Part Wei Ken ◽  
Leow Khang Heng

High carbon emissions of manufactured Portland cement in the concrete industry have incurred several interests in reducing the use of Portland cement by partially replacing it with supplementary cementitious materials. Most of which, are by-products from other manufacturing industries. Hence, the main purpose of this study is to investigate the effects of different combinations of ternary blended mortars incorporating supplementary cementitious materials such as Ground Granulated Blast Furnace Slag (GGBS) and Densified Silica Fume (DSF). In this study, mortars were prepared with 100% quarry dust and GGBS was replaced with DSF at 2% step increments up to 16% at a w/b ratio of 0.24. At the same time OPC content was fixed at 50%. The compressive and flexural strength, drying shrinkage, and porosity of mortars were all tested. The results indicated that the increasing DSF content increases; GGBS reduces the superplasticizer dosage for the desired workability of the mortar. The utilization GGBS and DSF has improved the performances ternary blended mortar incorporating quarry dust as a fine aggregate in terms of mechanical strength, drying shrinkage and total porosity tested. The high strength ternary blended mortar incorporating GGBS and DSF exhibited optimum mechanical and durability performance at the OPC:GGBS:DSF ratio of 50:38:12.


Author(s):  
Adeed Khan

The reason for this investigation is to create HPC using locally accessible ingredients in Pakistan. The trial study incorporates the utilization of silica fume and Metakaolin mostly. The mixture of preliminaries is made utilizing various volumes of the local supplementary cementitious materials SCM and aggregates to deliver HPC. Different tests are carried out, for example, compressive strength, Rapid chloride Penetration test and Concrete cured in dilute sulphuric acid solution are assessed. The water to cement proportion was kept as .5. Every concrete samples have 0, 5, 10, 15 and 20 percent cement replacing with metakaolin and silica fume halfway. The compression strength tests are done on 28 and 90 days of cured specimens. The rapid chloride permeability test and compressive strength on the concrete cylinder when place in dilute sulphuric acid solution is done after 28 days. The outcomes appeared by utilizing MK and SF in concrete improves the mechanical properties of the concrete with different degrees up to some level. The compressive quality of the concrete cylinder is maxed on 15% cement replacing with SCM. At 5% MK and SF cement replacement the strength of the concrete samples cured in dilute H2SO4 after 28 days shows rising in the result and its strength decreases at 10% cement replacement with SCMs than its strength increased again and gives max compressive strength with 15% replacement then strength reduces again at 20% cement additional with MK and SF moderately. The charge passing rate is maxed for normal concrete samples of RCPT. There is an inverse relationship between the charge passage and cement replacement. The Charge passage is decreased by increasing the quantity of cement additional with SCMs. 20% cement additional has the least charge level and is the best mix among all.


2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


2020 ◽  
Vol 13 ◽  
Author(s):  
Sri Ram Krishna Mishra ◽  
Pradeep Kumar Ghosh ◽  
Manoj Kulshreshtha

Background: The previous studies have focused curing effect of mainly on high strength concrete, where strict supervision is maintained. This study is based upon general purpose concreting work for commercial and residential construction in absence of skilled manpower and supervision. Objective: The objective of this study is to establish a thumb rule to provide 7 days initial curing for maintaining quality for unsupervised concreting irrelevant to type of cement and grading. Methods: In this study concrete samples made with locally available commercial cements were cured for various initial exposure. Results: The results shows that concrete cured after a gap of 4 days from the time of de-moulding have given lowest strength as compared to concrete cured in standard practices i.e. where proper curing protocol had been followed. Conclusion: Initial curing is most important aspect of gaining desired strength. The findings after this study shows that curing affects the strength of concrete in variable grading. Initial curing has great importance for concrete with all types of Portland cement. Concrete with supplementary cementitious materials gives lowest strength initially but results higher strength after 28 days as compared to Portland cement.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2291
Author(s):  
Alessandro P. Fantilli ◽  
Daria Jóźwiak-Niedźwiedzka

The environmental impact of the Portland cement production and the large use of cement-based building materials is a growing problem [...]


Sign in / Sign up

Export Citation Format

Share Document