Characterizations of Nitrogen Doped Cupric Oxide Thin Films Deposited on Different Substrates for Solar Cell Applications

2014 ◽  
Vol 925 ◽  
pp. 469-473
Author(s):  
Poh Kok Ooi ◽  
Mohd Anas Ahmad ◽  
Sha Shiong Ng ◽  
Mat Johar Abdullah

In this work, structural, optical and electrical properties of nitrogen doped (N-doped) cupric oxide (CuO) thin films deposited on <100> orientated n-type silicon, glass and polyethylene terephthalate substrates using reactive radio frequency sputtering system were investigated. X-ray diffraction results revealed that all films exhibited monoclinic CuO(-111) and have only slightly different structural properties for various substrates. Field effect scanning electron microscopy shown N-doped CuO on Si and glass are denser than on PET substrates and all have nanotriangle-like structure morphologies. The N-doped CuO thin films have an indirect band gap of around 1.30 eV. The resistively, carrier concentration and hall mobility of the N-doped CuO thin film on glass were 1.05 kΩ.cm, 6.70 x 1014 cm-3 and 8.86 cm2/V-s respectively. Furthermore, palladium formed ohmic contact characteristics for N-doped CuO on glass and PET but exhibited schottky contact characteristics for N-doped CuO on Si.

2019 ◽  

Transparent conducting oxide (TCO) thin films are materials of significance for their applications in optoelectronics and sun powered cells. Fluorine-doped tin oxide (FTO) is an elective material in the advancement of TCO films. This paper reports the impact of fluorine doping on structural, optical and electrical properties of tin oxide thin films for solar cells application. The sol-gel was prepared from anhydrous stannous chloride, SnCl2 as an originator, 2-methoxyethanol as a solvent, di-ethanolamine as a preservative and ammonium fluoride as the dopant source. FTO precursor solution was formulated to obtain 0, 5, 10, 15 and 20 % doping concentration and deposited on glass substrates by means of spin coater at the rate of 2000 rpm for 40 seconds. After pre-heated at 200 oC, the samples were annealed at 600 oC for 2 h. The structural, optical and electrical characteristics of prepared films were characterized using X-ray diffraction (XRD) analysis, UV-visible spectroscopy and electrical measurement. X-ray diffraction (XRD) investigation of the films demonstrated that the films were polycrystalline in nature with tetragonal-cassiterite structure with most extraordinary pinnacle having a grain size of 17.01 nm. Doping with fluorine decreases the crystallite size. There was increment in the absorbance of the film with increasing wavelength and the transmittance was basically reduced with increasing fluorine doping in the visible region. The energy band gaps were in the range of 4.106-4.121 eV. The sheet resistance were observed to decrease as the doping percentage of fluorine increased with exception at higher doping of 15 and 20 %. In view of these outcomes, FTO thin films prepared could have useful application in transparent conducting oxide electrode in solar cell.


2014 ◽  
Vol 975 ◽  
pp. 238-242 ◽  
Author(s):  
Adolfo Henrique Nunes Melo ◽  
Petrucio Barrozo Silva ◽  
Marcelo Andrade Macedo

ZnO multilayers and pure ZnO thin films were deposited onto glass using a sputtering system, and were subsequently characterized by X-ray diffractometry and UV-Vis spectroscopy. The resistivity of the samples was measured by the four-probe method. All films exhibited preferential orientation along the c-axis and the peak position (002) shifted to a lower position, indicating a reduction in the unit cell size. The pure ZnO thin film exhibited a maximum transmittance of approximately 98%, which decreased as the Nb layer increased, thus increasing the absorbance of the multilayer thin films. The energy band gap decreased as the thickness of the metal increased which higher value was 3.18 eV. The resistivity had a minimum of 0.1 × 10-4 Ω m.


2021 ◽  
Vol 406 ◽  
pp. 256-264
Author(s):  
Mohammed Mahdi ◽  
M. Kadri

First, the metallic oxides of PbO, TiO2 and ZrO2 were mixed following (2, 1, 1) molar mass respectively. Then 4 samples were separated (S1, S2, S3 and S4). the first one S1 was subjected to calcination treatments at 600, 700 and 800 °C however, the S2 was treated at 700 °C only, the S3 at 800 °C and S4 at 850 °C. The X ray diffraction of the samples reveals important difference in the phases obtained, at 600 °C the quadratic riche phase of PbTiO3 was mainly observed on sample S1, after the treatment at 700 °C and 800°C, the same XRD patterns were obtained with the same peaks positions and the relative intensity. However the S2 revels different pattern from S1 at 700 °C relative to the formation of the Pb(Zr0.75, Ti0.25)O3 Rhombohedral riche phase. The S3 XRD results reveal also different pattern from S1 at 800 °C relative to the formation of Pb (Zr0.58, Ti0.42) O3 near the Morphotropic phase boundary (MPB) and the S4 confirm these finding. Thin films grown from the S1 and S4 used as target in the RF sputtering system, show important difference in the PZT stoichiometry obtained which is relative to Pb (Zr0.44, Ti0.56) located in the quadratic riche phase and Pb (Zr0.52, Ti0.48) O3 near the MPB respectively.


RSC Advances ◽  
2017 ◽  
Vol 7 (36) ◽  
pp. 22094-22104 ◽  
Author(s):  
Ehsan Mohammadpour ◽  
Zhong-Tao Jiang ◽  
Mohmmednoor Altarawneh ◽  
Nicholas Mondinos ◽  
M. Mahbubur Rahman ◽  
...  

Cr1−xAlxN coatings, synthesised by an unbalanced magnetic sputtering system, showed improved microstructure and mechanical properties for ∼14–21% Al content.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Peijie Lin ◽  
Sile Lin ◽  
Shuying Cheng ◽  
Jing Ma ◽  
Yunfeng Lai ◽  
...  

Ag-doped In2S3(In2S3:Ag) thin films have been deposited onto glass substrates by a thermal evaporation method. Ag concentration is varied from 0 at.% to 4.78 at.%. The structural, optical, and electrical properties are characterized using X-ray diffraction (XRD), spectrophotometer, and Hall measurement system, respectively. The XRD analysis confirms the existence of In2S3and AgIn5S8phases. With the increase of the Ag concentration, the band gap of the films is decreased gradually from 2.82 eV to 2.69 eV and the resistivity drastically is decreased from ~103to5.478×10-2 Ω·cm.


2015 ◽  
Vol 11 (4) ◽  
pp. 3475-3481 ◽  
Author(s):  
Jinan A. Abd ◽  
Enas M. Al-Robayi ◽  
Zainab J. Shanan ◽  
Nadir F. Habubi

     Nanostructured indium doped CdO thin films were prepared by spray pyrolysis on glass substrate and annealed at 200-400 ᵒC for 1 hour. The structural, optical, and electrical properties of prepared films were studied using different techniques such as optical transmission, photoluminescence, X-ray diffraction, and Hall measurement. X-ray analysis shows that the In doped CdO films are preferentially orientated along (111) crystallographic directions. Increasing of annealing temperature increases the films packing density and reorient the crystallites along (1 1 1) plane.  The optical transmissions of all annealed films decreased with increasing annealing temperature. An increasing in the absorbance and photoluminescence spectra with increasing annealing temperature was denoted in all films. The band gap value of CdO:4%In equals to 2.5 eV and it decreases with annealing temperature and reaches of 2.45 eV for 400°C. The resistivity of annealed films decreased as annealing temperature increased. While high conductivity achieved in the present study is found to be 11.37 ×102 (Ω.cm)-1 for annealing at 400°C. 


2013 ◽  
Vol 20 (06) ◽  
pp. 1350058 ◽  
Author(s):  
R. E. ORNELAS-ACOSTA ◽  
S. SHAJI ◽  
D. AVELLANEDA ◽  
G. A. CASTILLO ◽  
T. K. DAS ROY ◽  
...  

In this work, we report the formation of In 6 Se 7 thin films by laser irradiation of In / Se layered structure. Indium layer was deposited on glass substrates by thermal evaporation on which selenium thin film was grown by chemical bath deposition from an aqueous solution containing 10 ml of sodium selenosulphate (0.1 M), 1.0 ml acetic acid (25%) and 70 ml distilled water during 5 min. The In / Se coated glass substrates were irradiated using a 532 nm continuous laser for 3–5 min. Structure, morphology, optical and electrical properties of the irradiated thin films were analyzed using various techniques. X-ray diffraction analysis showed that the irradiated thin films were In 6 Se 7 of monoclinic structure. X-ray photoelectron spectroscopic study on the laser irradiated samples provided uniform relative composition of In and Se in the thin films formed after laser irradiation. The morphology, optical and electrical properties of the irradiated samples were investigated. The optical band gap of the In 6 Se 7 thin films was 2.2 eV and also, the thin films were photoconductive.


2008 ◽  
Vol 15 (06) ◽  
pp. 787-791
Author(s):  
PEI ZHAO ◽  
RENG WANG ◽  
DINGQUAN LIU ◽  
FENGSHAN ZHANG ◽  
WEITAO SU ◽  
...  

The effects of the roughness of ZnS underlayer on the microstructure, optical, and electrical properties of nanometer Ag thin film have been investigated in this paper. Nanometer Ag thin films in glass/ ZnS /7.5 nm Ag /30 nm ZnS stacks have been deposited and analyzed. In the stacks, the underlayers of ZnS have been sputtered with various thicknesses to generate various surface roughnesses. The X-ray diffraction (XRD) has been used to study the crystal structure of Ag films. The surface topography and the roughness of ZnS underlayer have been analyzed by atomic force microscopy. The sheet resistant will become larger as the increasing of the roughness. The optical constants can be derived by fitting the transmission and reflectance spectrum. From optical constants comparison of Ag films, with the surface of the stack becoming rougher, it was found that the refractive index will increase but the extinction coefficient will decrease.


2012 ◽  
Vol 531 ◽  
pp. 93-96
Author(s):  
Qian Li ◽  
Xi Feng Li

The effects of after-annealed temperature on the microstructure, optical and electrical properties of solution processed amorphous indium gallium zinc oxide (a-IGZO) thin films were investigated in this article. The X-ray diffraction results confirmed that all the films were an amorphous structure. A transmittance of more than 90% in the visible wavelength region was obtained. the a-IGZO thin films reached the lowest electrical resistivity of 9.44×104Ω•cm with the after-annealed temperature of 300°C.


2012 ◽  
Vol 579 ◽  
pp. 118-123 ◽  
Author(s):  
Po Tsung Hsieh ◽  
Tse Chang Li ◽  
Chung Jen Chung ◽  
Hsin Shu Peng ◽  
Jen Fin Lin

AZO thin films were deposited using a magnetron sputtering system with an AZO target (with 3wt% Al2O3) on polyethylene terephthalate (PET) substrates with pre-strain. The effect of sputtering power on the optical and electrical properties of AZO films was investigated. For samples deposited on pre-strained PET substrates, X-ray diffraction was used to determine the c-axis orientation of AZO films deposited at 60, 80, and 100 W. Results show that resistivity decreased with increasing sputtering power, which might result from the better crystalline structure and fewer grain boundaries obtained at high power. The transmittance increased when the power was increased from 60 to 100 W. The absorption edge thus decreased for AZO film deposited at 100 W.


Sign in / Sign up

Export Citation Format

Share Document