Corrosion Inhibition of Gemini Surfactant for Copper in 3.5% NaCl

2014 ◽  
Vol 936 ◽  
pp. 1125-1131 ◽  
Author(s):  
Kun Cao ◽  
Hu Yuan Sun ◽  
Bao Rong Hou

A new gemini surfactant containing long chain alkyl ammonium headgroups have been used as corrosion inhinbitor for copper in 3.5% NaCl solution. The weight loss and electrochemical methods results showed that presence of inhibitor greatly decrease corrosion rate, gemini surfactant acted as an excellent corrosion inhibitor with inhibition efficiency greater than 96% at an optimum concentration of 30 mg·L-1. X-ray photoelectron spectroscopy reveals that the gemini surfactant molecules adsorb onto the copper surface through the two ammonium head groups (N+).

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4245
Author(s):  
Gaetano Palumbo ◽  
Kamila Kollbek ◽  
Roma Wirecka ◽  
Andrzej Bernasik ◽  
Marcin Górny

The effect of CO2 partial pressure on the corrosion inhibition efficiency of gum arabic (GA) on the N80 carbon steel pipeline in a CO2-water saline environment was studied by using gravimetric and electrochemical measurements at different CO2 partial pressures (e.g., PCO2 = 1, 20 and 40 bar) and temperatures (e.g., 25 and 60 °C). The results showed that the inhibitor efficiency increased with an increase in inhibitor concentration and CO2 partial pressure. The corrosion inhibition efficiency was found to be 84.53% and 75.41% after 24 and 168 h of immersion at PCO2 = 40 bar, respectively. The surface was further evaluated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy (XPS) measurements. The SEM-EDS and GIXRD measurements reveal that the surface of the metal was found to be strongly affected by the presence of the inhibitor and CO2 partial pressure. In the presence of GA, the protective layer on the metal surface becomes more compact with increasing the CO2 partial pressure. The XPS measurements provided direct evidence of the adsorption of GA molecules on the carbon steel surface and corroborated the gravimetric results.


RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 15210-15219 ◽  
Author(s):  
Zhi Cheng ◽  
Shi Mo ◽  
Jing Jia ◽  
Ji Feng ◽  
Hong Qun Luo ◽  
...  

4,6-Diamino-2-mercaptopyrimidine can be adsorbed on copper surface and exhibits a high corrosion inhibition efficiency in 3.5 wt% NaCl solution.


2014 ◽  
Vol 21 (06) ◽  
pp. 1450085 ◽  
Author(s):  
XUE WEI TAO ◽  
ZHANG ZHONG WANG ◽  
XIAO BO ZHANG ◽  
ZHI XIN BA ◽  
YA MEI WANG

Gadolinium ( Gd ) ion implantation with doses from 2.5 × 1016 to 1 × 1017 ions/cm2 into ZK60 magnesium alloy was carried out to improve its surface properties. X-ray photoelectron spectroscopy (XPS), nanoindenter, electrochemical workstation and scanning electron microscope (SEM) were applied to analyze the chemical composition, nanomechanical properties and corrosion characteristics of the implanted layer. The results indicate that Gd ion implantation produces a hybrid-structure protective layer composed of MgO , Gd 2 O 3 and metallic Gd in ZK60 magnesium alloy. The surface hardness and modulus of the Gd implanted magnesium alloy are improved by about 300% and 100%, respectively with the dose of 1 × 1017 ions/cm2, while the slowest corrosion rate of the magnesium alloy in 3.5 wt.% NaCl solution is obtained with the dose of 5 × 1016 ions/cm2.


Coatings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 315 ◽  
Author(s):  
Jun Hu ◽  
Tiantian Wang ◽  
Zhen Wang ◽  
Liping Wei ◽  
Jianbo Zhu ◽  
...  

A novel inhibitor based on mixed Mannich base (C15H15NO) and Na2WO4 was developed for the corrosion prevention of N80 steel in hydrochloric acid solution. Infra-red spectrum, electrochemical measurements, X-ray Photoelectron Spectroscopy, and Scanning Electron Microscopy were used to understand the inhibition efficiency and mechanism. The results showed that the mixed inhibitors reduced the corrosion current density and increased the interface resistance. The inhibition efficiency is the highest when the ratio of C15H15NO to Na2WO4 is 1:1 in the mixture. Observed from the surfaces, the number of pits and small cracks was reduced on the surface in the presence of the optimized inhibitors. The inhibition film can successfully hinder the chloride ions from reaching the bulk steel.


2013 ◽  
Vol 763 ◽  
pp. 23-27 ◽  
Author(s):  
Ji Liu ◽  
Li Zheng ◽  
Hai Bo Gan ◽  
Huan Liu ◽  
Zhi Hua Tao ◽  
...  

This paper presents the investigation of cyproconazole,namely2-(4-chlorophenyl)-3-cyclopropyl-1-(1H-1,2,4-triazol-1-yl) butan-2-ol,ascorrosion inhibitor for copper in synthetic seawater (3.5% NaCl solution).The inhibition action of cyproconazole on the corrosion of copper was investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization.The selective desorption of Cyproconazole from copper surface was also studied by the differential polarization curves.EIS indicates that the inhibition formed an adsorption film on copper surface.The inhibition efficiency increases with increasing concentration.Polarization curves show that Cyproconazole acts as mixed-up inhibitor.


2006 ◽  
Vol 11-12 ◽  
pp. 509-512 ◽  
Author(s):  
Hao Ye ◽  
Yu Zuo ◽  
Jin Ping Xiong ◽  
Jing Mao Zhao

Lithium ion was introduced into high purity aluminum (99.999%) by hydrotalcite precursor method, and Li/Al composite anodic film was obtained by anodizing. The methods of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the properties of the anodic film. The electrochemistry behaviors of composite anodic film were studied by means of potentiodynamic method and electrochemical impedance spectroscopy (EIS). The results showed that the composite anodic film was produced by hydrotalcite precursor method and which is amorphous to X-ray diffraction. The passivation current density of the anodic film in NaCl solution (1mol/L, pH=3, 7, 11) decreased obviously, while impedance value increased sharply. Corrosion resistance of the composite anodic film in NaCl solution was improved by the introduction of Li+ ion.


2019 ◽  
Vol 9 (2) ◽  
pp. 99-111
Author(s):  
Wejdene Mastouri ◽  
Luc Pichon ◽  
Serguei Martemianov ◽  
Thierry Paillat ◽  
Anthony Thomas

Stainless steels are broadly used thanks to their specific physical properties such as their high corrosion resistance in poorly aggressive solutions. However, only few studies have been reported in the literature concerning their electrochemical behavior in low concentration electrolytes medium. Accordingly, the present work aims to study the immersion time influence on the solid-liquid interface properties of the austenitic stainless steel AISI 304L, immersed in a low-concentrated (0.01 M) sodium chloride (NaCl) solution. The electroche­mical behavior of the interface was evaluated by electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP) monitoring. The morphological features and the modification of the surface composition were evaluated by Optic Microscopy, Scanning Electron Microscopy, Energy Dispersive X-ray Spectrometry, Atomic Force Microscopy, White Light Interferometry and X-ray Photoelectron Spectroscopy. It was determined by OCP measurement that the characteristic time of the interface stabilization is very long (several months). After an immersion of 2 months in NaCl solution, a second time constant on impedance phase diagram appears. Surface characterizations reveal a significant modifi­cation of the morphology and chemistry of the AISI 304L surface that can be linked to OCP/EIS observations. It can be noticed that the repeatability deviation of the EIS method was about 1 % while its reproducibility deviation was estimated to 35 %.


Sign in / Sign up

Export Citation Format

Share Document