The Influence of Friction Coefficient on Tenon/Groove Contact Performance in Nickel-Based Turbine Blade-Disc

2014 ◽  
Vol 940 ◽  
pp. 74-80 ◽  
Author(s):  
Guo Cai Zhou ◽  
Zhi Xun Wen ◽  
Zhu Feng Yue ◽  
Yu Fen Gao

This paper presented the influence of crystallographic orientation and friction coefficient on the contact stress and fatigue life in the tenon/groove contact region. A rate-dependent crystallographic plastic slip theory was used to calculate the contact stress and fatigue life in [001], [011] and [111] orientations. In the calculation, complex loading conditions and different friction coefficients of 0, 0.2, 0.4, 0.6, 0.8 and 1.0 were taken into account in tenon/groove. Then the relationship between contact stress, fatigue life and friction coefficient was discussed. Simulation results show that: friction coefficient and crystallographic orientation have significant effect on contact stress and fatigue life. Contact stress in [001], [011] and [111] orientation increases with increasing friction coefficient generally. For [001] and [011] orientation, the fatigue life decreases with increasing friction coefficient firstly. When friction coefficient is 0.4, the fatigue life meets its minimum. Then the fatigue life will increase with increasing friction coefficient. For [111] orientation, the change of fatigue life has no obvious trend, and while friction coefficient exceeds 0.6, the life almost constant.

Author(s):  
Xuda Qin ◽  
Xingfeng Cao ◽  
Hao Li ◽  
Meng Zhou ◽  
Ende Ge ◽  
...  

Due to good aerodynamic performance and reliability, countersunk bolt joint is one of the most commonly used connection methods for carbon fiber reinforced polymer (CFRP) components in the aircraft. However, the countersunk hole machining process is inevitably accompanied by geometric errors, which will directly affect the mechanical properties of the joint structure. This paper presents a numerical and experimental investigation on the effect of countersunk hole geometry errors on the fatigue performance of CFRP bolted joints. FE model of CFRP countersunk bolted joints with designed geometry errors are established, and the rationality of the FE analysis was verified by fatigue life and failure forms. The CFRP bolted structure failure mechanism under fatigue load and influence of hole-making geometry error (including countersunk fillets radius, countersunk depth, and countersunk angle) on the fatigue life are investigated. Based on the relationship between fatigue life and the geometry error, the corresponding tolerances for CFRP bolt joint countersunk hole are determined as well. The research results can provide a reference for establishing reasonable geometric accuracy requirements for CFRP joint hole machining.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ting Wang ◽  
Hanfei Guo ◽  
Jianjun Qiao ◽  
Xiaoxue Liu ◽  
Zhixin Fan

PurposeTo address the lack of data in this field and determine the relationship between the coefficient of friction and the interference between locomotive wheels and axles, this study evaluates the theoretical relationship between the coefficient of friction and the interference under elastic deformation.Design/methodology/approachWhen using numerical analyses to study the mechanical state of the contacting components of the wheels and axle, the interference between the axle parts and the coefficient of friction between the axle parts are two important influencing factors. Currently, as the range of the coefficient of friction between the wheel and axle in interference remains unknown, it is generally considered that the coefficient of friction is only related to the materials of the friction pair; the relationship between the interference and the coefficient of friction is often neglected.FindingsA total of 520 press-fitting experiments were conducted for 130 sets of wheels and axles of the HXD2 locomotive with 4 types of interferences, in order to obtain the relationship between the coefficient of friction between the locomotive wheel and axle and the amount of interference. These results are expected to serve as a reference for selecting the coefficient of friction when designing axle structures with the rolling stock, research on the press-fitting process and evaluations of the fatigue life.Originality/valueThe study provides a basis for the selection of friction coefficient and interference amount in the design of locomotive wheels and axles.


2021 ◽  
pp. 1-27
Author(s):  
Junichi Hongu ◽  
Ryohei Horita ◽  
Takao Koide

Abstract This study proposes a modification of the Matsumoto equation using a directional parameter of tooth surfaces to adapt various gear finishing processes. The directional parameters of a contact surface, which affect oil film formations, have been discussed in the field of tribology; but this effect has been undetermined on the meshing gear tooth surfaces having directional machining marks. Thus, this paper investigates the relationship between the gear frictional coefficients and the directional parameters (based on ISO25178) of their tooth surfaces with the various finishing processes; and modifies the Matsumoto equation by introducing a new directional parameter to augment the various gear finishing processes. Our findings indicate that through optimizing the coefficient of the correction term the include the new directional parameter, the calculated friction values using the modified Matsumoto equation correlate more highly to the experimental friction values than that using the unmodified Matsumoto equation.


2019 ◽  
Vol 823 ◽  
pp. 33-40 ◽  
Author(s):  
Yu Tong Hu ◽  
Yong Yong He ◽  
Wei Wang

Friction happens everywhere. Abrasives generated in tribological process will result in secondary wear. Abrasive wear is a kind of rather common but harmful wear, which is the main reason for the damage of fifty-percent mechanical components by friction. Surface texturing is an effective method to improve the tribological and lubricating performance of tribo-pairs. In this paper, with different-size diamond particles added into the lubricant and a surface of the tribo-pairs textured by different parameters (diameter and depth) with femtosecond laser, the relationship between the surface texture and the abrasive wear was researched, and the influence of the texture on the abrasive wear was analyzed. The friction experiments were carried out on UMT3. The microstructures were tested and analyzed by SEM, microscope and White Light Interferometer respectively. The experimental results showed that the size of the surface texture, compared with that of abrasives, is the main factor which determines the friction coefficient. As the size of the surface texture is much bigger than that of the abrasives, the texture can accommodate the abrasives efficiently, and thus the friction coefficient is reduced efficiently.


2021 ◽  
Vol 36 (1) ◽  
pp. 111-119
Author(s):  
Behzad Jafari Mohammadabadi ◽  
Kourosh Shahriar ◽  
Hossein Jalalifar ◽  
Kaveh Ahangari

Rocks are formed from particles and the interaction between those particles controls the behaviour of a rock’s mechanical properties. Since it is very important to conduct extensive studies about the relationship between the micro-parameters and macro-parameters of rock, this paper investigates the effects of some micro-parameters on strength properties and the behaviour of cracks in rock. This is carried out by using numerical simulation of an extensive series of Uniaxial Compressive Strength (UCS) and Brazilian Tensile Strength (BTS) tests. The micro-parameters included the particles’ contact modulus, the contact stiff ness ratio, bond cohesion, bond tensile strength, the friction coefficient and the friction angle, and the mechanical properties of chromite rock have been considered as base values of the investigation. Based on the obtained results, it was found that the most important micro-parameters on the behaviour of rock in the compressive state are bond cohesion, bond tensile strength, and the friction coefficient. Also, the bond tensile strength showed the largest effect under tensile conditions. The micro-parameter of bond tensile strength increased the rock tensile strength (up to 5 times), minimized destructive cracks and increased the corresponding strain (almost 2.5 times) during critical stress.


2020 ◽  
Vol 11 ◽  
Author(s):  
Irena Andršová ◽  
Katerina Hnatkova ◽  
Martina Šišáková ◽  
Ondřej Toman ◽  
Peter Smetana ◽  
...  

The electrocardiographic (ECG) assessment of the T peak–T end (Tpe) intervals has been used in many clinical studies, but several related physiological aspects have not been reported. Specifically, the sources of the Tpe differences between different ECG leads have not been systematically researched, the relationship of Tpe duration to underlying heart rate has not been firmly established, and little is known about the mutual correspondence of Tpe intervals measured in different ECG leads. This study evaluated 796,620 10-s 12-lead ECGs obtained from long-term Holters recorded in 639 healthy subjects (311 female) aged 33.8 ± 9.4 years. For each ECG, transformation to orthogonal XYZ lead was used to measure Tpe in the orthogonal vector magnitude (used as a reference for lead-to-lead comparisons) and to construct a three-dimensional T wave loop. The loop roundness was expressed by a ratio between its circumference and length. These ratios were significantly related to the standard deviation of Tpe durations in different ECG leads. At the underlying heart rate of 60 beats per minute, Tpe intervals were shorter in female than in male individuals (82.5 ± 5.6 vs 90.0 ± 6.5 ms, p < 0.0001). When studying linear slopes between Tpe intervals measured in different leads and the underlying heart rate, we found only minimal heart rate dependency, which was not systematic across the ECG leads and/or across the population. For any ECG lead, positive Tpe/RR slope was found in some subjects (e.g., 79 and 25% of subjects for V2 and V4 measurements, respectively) and a negative Tpe/RR slope in other subjects (e.g., 40 and 65% for V6 and V5, respectively). The steepest positive and negative Tpe/RR slopes were found for measurements in lead V2 and V4, respectively. In all leads, the Tpe/RR slope values were close to zero, indicating, on average, Tpe changes well below 2 ms for RR interval changes of 100 ms. On average, longest Tpe intervals were measured in lead V2, the shortest in lead III. The study concludes that the Tpe intervals measured in different leads cannot be combined. Irrespective of the measured ECG lead, the Tpe interval is not systematically heart rate dependent, and no heart rate correction should be used in clinical Tpe investigations.


Author(s):  
Xiaoran Liu ◽  
Qin Sun ◽  
Ke Liang

Based on Non-intrusive Polynomial Chaos method, a small sample prediction method for engineering p-S-N curve that has a medium fatigue life is proposed. Parameters in Basquin model are calculated through optimization method based on small sample of observed fatigue life. We establish NIPC polynomials and obtain big sample parameters, obtaining probabilistic properties of parameters with the big sample EDF method. Then the relationship between statistics and stress level are fitted with least squares method. Some new samples are introduced to improve the accuracy of the method. The statistics are updated by Bayesian method. Samples parameters under any stress level are obtained to calculate corresponding fatigue life. Probabilistic properties of fatigue life are predicted, and the p-S-N curve is established. Test observations of aluminium alloy T-2024 are all located in the interval of 95% quantile, showing that the method can effectively predict probabilistic properties of medium fatigue life.


2011 ◽  
Vol 23 (1) ◽  
pp. 53 ◽  
Author(s):  
Ping Yang ◽  
Li Meng ◽  
Yisong Hu ◽  
Zude Zhao ◽  
Xueping Ren

Orientation mapping based on electron back scattering diffraction technique was applied to reveal the distributions of disorientations and rotation axes of grains caused by plastic slip and twinning during channel die compression in magnesium alloy ZA31. In addition, the orientations of dynamically recrystallized grains and deformed grains were separated and compared with respect to their initial textures. The relationship of strain and {1012} twin amount was determined quantitatively by referring to twin orientations. The reasons leading to the observed phenomena are analyzed and discussed.


2011 ◽  
Vol 88-89 ◽  
pp. 34-37
Author(s):  
Kuai Ji Cai

The relationship of the friction coefficient and the MTC were discussed, and the MTC and its effects on surface roughness were a theoretical analysised and experimental verification by AFM (atomic force microscope). The results show that the theoretical MTC tends to be minimal value then before the adhering effect to reach remarkable. Appropriate adjustments cutting parameters, the cutting process can always micro-cutting phase to reach the steady-thin chip, and no plowing phenomenon. So the surface residues highly were reduced and higher surface quality was achieved.


Sign in / Sign up

Export Citation Format

Share Document