Comparison of Several Technical Treatment of Oily Wastewater by Fly Ash

2014 ◽  
Vol 955-959 ◽  
pp. 2747-2750 ◽  
Author(s):  
Tao Yin ◽  
Xiang Yang Huang

Oily wastewater and fly ash will cause great pollution to the environment, the paper reviewed the fly ash as the oil removal medium, through the means of directly adding as adsorbents, preparing fly ash ceramisite, adding to remove oil after modification and combing with other treatment processes, etc., had better treatment effect on a variety of oily wastewater generated from different backgrounds. The results showed that using fly ash to treat the oily wastewater could achieve "using waste to treat waste", and could play a dual effect on the environmental protection. Meanwhile it pointed out deficiencies in the existing processes, and the future research should rely mainly on improving the adsorption capacity, the separation and the final treatment of saturated fly ash, and strengthening the research on reaction mechanism.

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4628
Author(s):  
Oisaemi Uduagele Izevbekhai ◽  
Wilson Mugera Gitari ◽  
Nikita Tawanda Tavengwa ◽  
Wasiu Babatunde Ayinde ◽  
Rabelani Mudzielwana

The severity of oil pollution, brought about by improper management, increases daily with an increase in the exploration and usage of oil, especially with an increase in industrialization. Conventional oil treatment methods are either expensive or time consuming, hence the need for new technologies. The aim of this research is to synthesize polypyrrole-modified silica for the treatment of oily wastewater. Pyrrole was copolymerized with silica in the presence of ferric chloride hexahydrate by adding 23 mL of 117.4 g/dm3 ferric chloride hexahydrate drop wise to a silica-pyrrole mixture (1:2.3). The mixture was stirred for 24 h, filtered and dried at 60 °C for 24 h. The composite was then characterized using FTIR and SEM/EDX. A central composite model was developed in design expert software to describe the efficiency of oil removal using the polypyrrole-modified silica under the influence of initial oil concentration, adsorbent dosage and contact time. The synthesized adsorbent had FTIR bands at 3000–3500 cm−1 (due to the N-H), 1034 cm−1 (attributed to the Si-O of silica), 1607 cm−1 and 1615 cm−1 (due to the stretching vibration of C=C of pyrrole ring). The adsorption capacity values predicted by the central composite model were in good agreement with the actual experimental values, indicating that the model can be used to optimize the removal of oil from oily wastewater in the presence of polypyrrole-modified silica. The adsorbent showed excellent oil uptake when compared with similar materials. The optimum conditions for oil removal were 7091 mg/L oil concentration, 0.004 g adsorbent dosage and contact time of 16 h. Under these conditions, the percentage of oil adsorption was 99.3% and adsorption capacity was 8451 mg/g. As a result of the low optimum dosage and the lack of agitation, the material was found to be applicable in the remediation of field wastewater.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2741
Author(s):  
Pengcheng Lv ◽  
Ruihong Meng ◽  
Zhongyang Mao ◽  
Min Deng

In this study, the hydrated sodium aluminosilicate material was synthesized by one-step hydrothermal alkaline desilication using fly ash (FA) as raw material. The synthesized materials were characterized by XRD, XRF, FT-IR and SEM. The characterization results showed that the alkali-soluble desilication successfully had synthesized the sodium aluminosilicate crystalline (N-A-S-H) phase of sodalite-type (SOD), and the modified material had good ionic affinity and adsorption capacity. In order to figure out the suitability of SOD as an adsorbent for the removal of ammonium and phosphorus from wastewater, the effects of material dosing, contact time, ambient pH and initial solute concentration on the simultaneous removal of ammonium and phosphorus are investigated by intermittent adsorption tests. Under the optimal adsorption conditions, the removal rate of ammonium was 73.3%, the removal rate of phosphate was 85.8% and the unit adsorption capacity reached 9.15 mg/L and 2.14 mg/L, respectively. Adsorption kinetic studies showed that the adsorption of ammonium and phosphorus by SOD was consistent with a quasi-secondary kinetic model. The adsorption isotherm analysis showed that the equilibrium data were in good agreement with the Langmuir and Freundlich model. According to thermodynamic calculations, the adsorption of ammonium and phosphorus was found to be a heat-absorbing and spontaneous process. Therefore, the preparation of SOD by modified FA has good adsorption properties as adsorbent and has excellent potential for application in the removal of contaminants from wastewater.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Maria Harja ◽  
Gabriela Buema ◽  
Nicoleta Lupu ◽  
Horia Chiriac ◽  
Dumitru Daniel Herea ◽  
...  

Fly ash/magnetite material was used for the adsorption of copper ions from synthetic wastewater. The obtained material was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area, and vibrating sample magnetometer (VSM). Batch adsorption experiments were employed in order to investigate the effects of adsorbent dose, initial Cu (II) concentration and contact time over adsorption efficiency. The experimental isotherms were modeled using Langmuir (four types of its linearization), Freundlich, Temkin, and Harkins–Jura isotherm models. The fits of the results are estimated according to the Langmuir isotherm, with a maximum adsorption capacity of 17.39 mg/g. The pseudo-second-order model was able to describe kinetic results. The data obtained throughout the study prove that this novel material represents a potential low-cost adsorbent for copper adsorption with improved adsorption capacity and magnetic separation capability compared with raw fly ash.


2014 ◽  
Vol 53 (17) ◽  
pp. 6985-6989 ◽  
Author(s):  
Zeyad T. Ahmed ◽  
David W. Hand
Keyword(s):  
Fly Ash ◽  

2021 ◽  
Vol 661 (1) ◽  
pp. 012003
Author(s):  
Zhiyong Han ◽  
Ziming Shang ◽  
Rongfu Xu ◽  
Quancun Kong ◽  
Chengzhen Du ◽  
...  

2021 ◽  
Vol 896 ◽  
pp. 45-50
Author(s):  
Lian Yi Huo ◽  
Xue Tao Shi ◽  
Si Ming Chen ◽  
Meng Yao Zhang

Hyperbranched polymers (HBPs) have been applied in various fields because of its outstanding biodegradability and biocompatibility. At present, there are a variety of methods that are used to fabricate HBPs, such as polycondensation, reactive polymerization and ring-opening polymerization according to reaction mechanism. These methods are all environmental-friendly and high-efficient to generate HBPs, and are valuable for industrialization. In this work, we conclude some common methods of HBPs fabrication and make the comparison between them to analyze their advantages and disadvantages, which contribute in how to improve the synthesis process in the future research.


2019 ◽  
Vol 19 (3) ◽  
pp. 475-483 ◽  
Author(s):  
Muvumbu Jean-Luc Mukaba ◽  
Alechine Emmanuel Ameh ◽  
Chuks Paul Eze ◽  
Leslie Felicia Petrik

2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
M. Kamaraj ◽  
Sudarshan Kamble ◽  
S. V. R. K. N. Sonia

This study is attempted to extract the amorphous silica composites using the combined HNO3 leaching-calcination (600°C/6 h) method from corn stalk harvested in Bishoftu, Ethiopia, owning to its profuse dumping, less cost, and negative environmental implications. The resultant composite characteristics such as amorphous nature are connected via the grain boundary which produces an agglomerated structure that has a disordered morphology, and the presence of siloxane and silanol groups, as well as additional functional groups, is reported. The synthesized product is applied in the removal of oil from synthetic oily wastewater (SYOWW) using batch mode delivering a maximum oil removal of up to 99%. The outcome of the study features the potential acclimatization of the Ethiopian corn stalk as a substitute precursor for the production of silica composites which has a potential oil adsorption capacity that can be used for oil spill cleanup.


Sign in / Sign up

Export Citation Format

Share Document