The Stereoscopic Morphology of Martensite in Ferrous Alloys

2010 ◽  
Vol 97-101 ◽  
pp. 695-698
Author(s):  
Yue Xin Ma ◽  
Yu Wu ◽  
Shao Kui Yang ◽  
Long Wang ◽  
Yu Hua Tan

The space morphology of martensite in 15, 45 and T9 steels quenched from high temperatures had been observed under a scanning electron microscope using a thin-foil specimen which were deeply etched. The results show that the space appearance of packet martensite is not lath-like in shape, but sheet-like in low carbon steel, and thin plate-like in medium and high carbon steels. The stereoscopic models of two kinds of packet martensite, named sheet-like and thin plate-like martensite by authors, were proposed.

Author(s):  
F. A. Khalid ◽  
D. V. Edmonds

The austenite/pearlite growth interface in a model alloy steel (Fe-1lMn-0.8C-0.5V nominal wt%) is being studied in an attempt to characterise the morphology and mechanism of VC precipitation at the growth interface. In this alloy pearlite nodules can be grown isothermally in austenite that remains stable at room temperature thus facilitating examination of the transformation interfaces. This study presents preliminary results of thin foil TEM of the precipitation of VC at the austenite/ferrite interface, which reaction, termed interphase precipitation, occurs in a number of low- carbon HSLA and microalloyed medium- and high- carbon steels. Some observations of interphase precipitation in microalloyed low- and medium- carbon commercial steels are also reported for comparison as this reaction can be responsible for a significant increase in strength in a wide range of commercial steels.The experimental alloy was made as 50 g argon arc melts using high purity materials and homogenised. Samples were solution treated at 1300 °C for 1 hr and WQ. Specimens were then solutionised at 1300 °C for 15 min. and isothermally transformed at 620 °C for 10-18hrs. and WQ. Specimens of microalloyed commercial steels were studied in either as-rolled or as- forged conditions. Detailed procedures of thin foil preparation for TEM are given elsewhere.


2017 ◽  
Vol 36 (4) ◽  
pp. 347-357 ◽  
Author(s):  
Yang Li ◽  
Jing Wang ◽  
Jiaquan Zhang ◽  
Changgui Cheng ◽  
Zhi Zeng

AbstractThe surface quality of slabs is closely related with the initial solidification at very first seconds of molten steel near meniscus in mold during continuous casting. The solidification, structure, and free deformation for given steels have been investigated in droplet experiments by aid of Laser Scanning Confocal Microscope. It is observed that the appearances of solidified shells for high carbon steels and some hyper-peritectic steels with high carbon content show lamellar, while that for other steels show spherical. Convex is formed along the chilling direction for most steels, besides some occasions that concave is formed for high carbon steel at times. The deformation degree decreases gradually in order of hypo-peritectic steel, ultra-low carbon steel, hyper-peritectic steel, low carbon steel, and high carbon steel, which is consistent with the solidification shrinkage in macroscope during continuous casting. Additionally, the microstructure of solidified shell of hypo-peritectic steel is bainite, while that of hyper-peritectic steel is martensite.


2019 ◽  
Vol 297 ◽  
pp. 05005
Author(s):  
Kharis Rakhimyanov ◽  
Viktor Gileta ◽  
Artem Samul

The possibility of using ultrasonic surface hardening with implementing the indenter tangential oscillations to the deformed surface to improve the quality of the detail surface layer produced from low carbon steel and ferrous alloys is considered in the paper. The mathematical description of the trajectory of the relative displacement of the instrument and the detail is presented. It is established that the important technological parameter influencing the character of the formed micro-geometry is the angle between the instrument vectors and the detail speed. The effect of the technological factors of the ultrasonic surface hardening on the amplitude and spacing parameters of the surface roughness are revealed. The results of the research showed that the ultrasonic processing at the tangential oscillations of the indenter allows forming a stable micro-geometrical state of the surface layer with low values of the amplitude and spacing parameters on the details made from non-ferrous alloys and low carbon steels.


2017 ◽  
Vol 740 ◽  
pp. 93-99
Author(s):  
Muhammad Hafizuddin Jumadin ◽  
Bulan Abdullah ◽  
Muhammad Hussain Ismail ◽  
Siti Khadijah Alias ◽  
Samsiah Ahmad

Increase of soaking time contributed to the effectiveness of case depth formation, hardness properties and carbon content of carburized steel. This paper investigates the effect of different soaking time (7-9 hours) using powder and paste compound to the carburized steel. Low carbon steels were carburized using powder and paste compound for 7, 8 and 9 hours at temperature 1000°C. The transformation of microstructure and formation carbon rich layer was observed under microscope. The microhardness profiles were analyzed to investigate the length of case depth produced after the carburizing process. The increment of carbon content was considered to find the correlation between types of carburizing compound with time. Results shows that the longer carburized steel was soaked, the higher potential in formation of carbon rich layer, case depth and carbon content, which led to better hardness properties for carburized low carbon steel. Longer soaking time, 9 hours has a higher dispersion of carbon up to 41%-51% compare to 8 hours and 7 hours. By using paste carburizing, it has more potential of carbon atom to merge the microstructure to transform into cementite (1.53 wt% C) compare to powder (0.97 wt% C), which increases the hardness of carburized steel (13% higher).


1987 ◽  
Vol 109 (3) ◽  
pp. 257-264 ◽  
Author(s):  
E. M. Kopalinsky ◽  
P. L. B. Oxley

Experiments show that the cold working of low carbon steel work materials can improve their machinability by reducing cutting forces and improving surface finish and tool life. The somewhat paradoxical result of reducing cutting forces by cold working a material so that its hardness is increased is explained in this paper by using a machining theory which takes account of the flow stress properties of the work material and can thus allow for the effects of cold working.


2009 ◽  
Vol 79-82 ◽  
pp. 143-146
Author(s):  
Jiang Hua Ma ◽  
Dong Ping Zhan ◽  
Zhou Hua Jiang ◽  
Ji Cheng He

In order to understand the effects of deoxidizer such as aluminium, titanium and magnesium on the impact toughness of heat affected zone (HAZ), three low carbon steels deoxidized by Ti-Al, Mg and Ti-Mg were obtained. After smelting, forging, rolling and welding simulation, the effects of Al, Ti and Mg addition on the impact toughness of HAZ in low carbon steel were studied. The inclusion characteristics (size, morphology and chemistry) of samples before welding and the fracture pattern of the specimens after the Charpy-type test were respectively analyzed using optical microscope and scanning electron microscopy (SEM). The following results were found. The density of inclusion in Ti-Mg deoxidized steel is bigger than Ti-Al deoxidized steel. The average diameter is decreased for the former than the latter. The addition of Ti-Mg can enhance the impact toughness of the HAZ after welding simulation. The maximal value of the impact toughness is 66.5J/cm2. The complex particles of MgO-TiOx-SiO2-MnS are most benefit to enhance impact toughness. The improvement of HAZ is attributable to the role of particle pinning and the formation of intergranular ferrite.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5059
Author(s):  
Michail Nikolaevich Brykov ◽  
Ivan Petryshynets ◽  
Miroslav Džupon ◽  
Yuriy Anatolievich Kalinin ◽  
Vasily Georgievich Efremenko ◽  
...  

The purpose of the research was to obtain an arc welded joint of a preliminary quenched high-carbon wear resistant steel without losing the structure that is previously obtained by heat treatment. 120Mn3Si2 steel was chosen for experiments due to its good resistance to mechanical wear. The fast cooling of welding joints in water was carried out right after welding. The major conclusion is that the soft austenitic layer appears in the vicinity of the fusion line as a result of the fast cooling of the welding joint. The microstructure of the heat affected zone of quenched 120Mn3Si2 steel after welding with rapid cooling in water consists of several subzones. The first one is a purely austenitic subzone, followed by austenite + martensite microstructure, and finally, an almost fully martensitic subzone. The rest of the heat affected zone is tempered material that is heated during welding below A1 critical temperature. ISO 4136 tensile tests were carried out for the welded joints of 120Mn3Si2 steel and 09Mn2Si low carbon steel (ASTM A516, DIN13Mn6 equivalent) after welding with fast cooling in water. The tests showed that welded joints are stronger than the quenched 120Mn3Si2 steel itself. The results of work can be used in industries where the severe mechanical wear of machine parts is a challenge.


2016 ◽  
Vol 369 ◽  
pp. 59-64
Author(s):  
Muhammad Ali Abro ◽  
Dong Bok Lee

A low carbon steel was hot-dip aluminized, and corroded in the N2/0.4%H2S-mixed gas at 650-850°C for 20-50 h in order to find the effect of aluminizing on the high-temperature corrosion of the low carbon steel in the H2S environment. A thin Al topcoat and a thick Al-Fe alloy layer that consisted primarily of Al5Fe2 and some FeAl and Al3Fe formed on the surface after aluminizing. The corrosion rate increased with an increase in temperature. Hot-dip aluminizing increased the corrosion resistance of the carbon steel through forming a thin protective α-Al2O3 scale on the surface. The α-Al2O3 scale was susceptible to spallation. During corrosion, internal voids formed in the Al-Fe alloy layer, where the Al5Fe2, AlFe, and Al3Fe compounds gradually transformed through interdiffusion.


2011 ◽  
Vol 121-126 ◽  
pp. 231-238 ◽  
Author(s):  
Yue Xin Ma ◽  
Yue Jun Liu ◽  
Long Wang ◽  
De Chang Zeng ◽  
Yu Hua Tan

The microstructures of 11 kinds of commercial steels quenched from high temperature were deeply studied by optical microscope and canning election microscope. It was proved that packet martensite in medium and high carbon steels is not lath martensite, but rather packet plate martensite. Through the analysis of crystallography,it was found that four change rules of crystal orientation may arise during the process of martensite transformation. Two inner interfaces spontaneously formed were only discovered in martensite transformation process: small-angel boundary (misorientation angle is 0 ~ 10º) and twin boundary (misorientation angle is 70º32’). The former mainly appeared in low carbon martensite, and the latter principally formed in medium and high carbon martensite. The twin boundary packet mechanism in medium and high carbon steels has made in detail in this paper.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3571
Author(s):  
Mingxue Sun ◽  
Yang Xu ◽  
Tiewei Xu

We studied the effect of Cu addition on the hardness of ultra-low carbon steels heat treated with different cooling rates using thermal simulation techniques. The microstructural evolution, Cu precipitation behaviors, variations of Vickers hardness and nano-hardness are comparatively studied for Cu-free and Cu-bearing steels. The microstructure transforms from ferritic structure to ferritic + bainitic structure as a function of cooling rate for the two steels. Interphase precipitation occurs in association with the formation of ferritic structure at slower cooling rates of 0.05 and 0.2 °C/s. Coarsening of Cu precipitates occurs at 0.05 °C/s, leading to lower precipitation strengthening. As the cooling rate increases to 0.2 °C/s, the interphase and dispersive precipitation strengthening effects are increased by 63.9 and 50.0 MPa, respectively. Cu precipitation is partially constrained at cooling rate of 5 °C/s, resulting in poor nano-hardness and Young’s Modulus. In comparison with Cu-free steel, the peak Vickers hardness, nano-hardness and Young’s Modulus are increased by 56 HV, 0.61 GPa and 55.5 GPa at a cooling rate of 0.2 °C/s, respectively. These values are apparently higher than those of Cu-free steel, indicating that Cu addition in steels can effectively strengthen the matrix.


Sign in / Sign up

Export Citation Format

Share Document