Nanotechnology and Earth Construction: The Mechanical Properties of Adobe Brick Stabilized by Laponite Nanoparticles

2014 ◽  
Vol 983 ◽  
pp. 63-66
Author(s):  
Francesca Scalisi

The contribution describes the experimental analysis for the improvement of the mechanical properties of samples of earth with the addition of Laponite nanoparticles. Were made two types of samples: the first consisting of soil, sand and water; the second consisting of soil, water, sand and Laponite nanoparticles. The operations performed were: chemical analysis of soil and sand; preparation of samples; Scanning Electron Microscope (SEM) observation of samples for the distribution of the elements, especially the Laponite nanoparticles; testing of compression strength and flexural strength of two types of samples; comparisons of the resulted of the mechanical tests. The improvement of the mechanical characteristics of the earth material using nanotechnology, will increase the use of eco-friendly, non-toxic, cost effective, available materials in architecture.

2018 ◽  
Vol 18 (06) ◽  
pp. 1850035
Author(s):  
Punyapriya Mishra ◽  
Narasingh Deep ◽  
Sagarika Pradhan ◽  
Vikram G. Kamble

Carbon nanotubes (CNTs) are widely explained in fundamental blocks of nanotechnology. These CNTs exhibit much greater tensile strength than steel, even almost similar to copper, but they have higher ability to carry much higher currents, they seem to be a magical material with all these mentioned properties. In this paper, an attempt has been made to incorporate this wonder material, CNT, (with varying percentages) in polymeric matrix (Poly methyl methacrylate (PMMA)) to create a new conductive polymer composite. Various mechanical tests were carried out to evaluate its mechanical properties. The dielectric properties such as dielectric loss and dielectric constant were evaluated with the reference of temperature and frequency. The surface structures were analyzed by Scanning Electron Microscope (SEM).


2020 ◽  
Vol 841 ◽  
pp. 114-118
Author(s):  
Marco Antonio Navarrete Seras ◽  
Francisco Javier Domínguez Mota ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
...  

. Banks of stone materials from Michoacán, Mexico were characterized, since they are used in the construction of infrastructure in the area. With these materials are made hydraulic concrete mixtures or asphalt mixtures, foundations, paving stones and in restoration of historical monuments. The rocks analyzed and characterized, come from banks of volcanic stone materials and banks of crushed stone materials, which were subjected to mechanical tests such as uniaxial compression resistance (UCR), in addition was used scanning electron microscope (SEM), by means of which the characterization was carried out, obtaining morphological information of the material. The comparison of physical-mechanical properties with the elements they possess is important to estimate their behavior within ceramic matrices or as a structural element.


2014 ◽  
Vol 635 ◽  
pp. 194-197 ◽  
Author(s):  
Branislav Duleba ◽  
Emil Spišák ◽  
Janusz W. Sikora ◽  
Ľudmila Dulebova

This contribution deals about study of mechanical properties and compatibility between PA6 polymer as matrix and modified and unmodified montmorillonite clay nanofiller Cloisite. For this purposes in the first part of study the Hamaker constants, Adhesion work and B parameter for systems PA6/Cloisite 30B, PA6/Cloisite 93A and Pa6/Cloisite Na+ were calculated and compared. The second part of article consists of mechanical tests (tensile test, impact test) of moulded samples and Scanning Electron Microscope (SEM) study of these samples.


2010 ◽  
Vol 154-155 ◽  
pp. 1319-1323 ◽  
Author(s):  
Xing Hai Wang ◽  
Chong Hai Xu ◽  
Ming Dong Yi ◽  
Hui Fa Zhang

In recent, the development of new die materials is one of the important topics in the field of die research. In this paper, effects of nano-ZrO2 addition on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The newly developed Ti(C,N)-based cermet die materials with different contents of nano-ZrO2 of 0~25wt% were prepared by hot pressing technique under vacuum atmosphere at 1450°C for 30min. Moreover, the microstructure of this Ti(C,N)-based cermet die materials was observed by environmental scanning electron microscope. It indicates that the comprehensive mechanical properties can reach the optimum when the weight percent of the nano-ZrO2 is 10%. The corresponding flexural strength and fracture toughness is 967 MPa and 13.62 MPa•m1/2, respectively which is approximately 65% and 110% higher than that of the cermet without nano-ZrO2 addition. It suggests that the addition of nano-ZrO2 can improve the mechanical properties especially the fracture toughness and flexural strength of Ti(C,N)-based cermet die materials.


2016 ◽  
Vol 849 ◽  
pp. 865-868
Author(s):  
Chang Jiang Xiao

Using the hot-pressing sintering method, Cu-matrix bonding diamond tool bits including 0, 4 and 8 % Ti content (wt.%) were prepared. The effect of Ti content on the mechanical properties of Cu-matrix bonding diamond tool bits was studied. The experimental results showed that the influence of Ti content on the flexural strengths of Cu-matrix bonding bits and diamond tool bits are significant. Furthermore, the morphologies and compositions of fracture surfaces of diamond tool bits were characterized by scanning electron microscope and energy dispersive spectroscopy. The results illustrated that when the Ti content was 4%, the interface bonding between the diamond and the Cu-matrix bonding was the strongest, the flexural strength had the maximum values of the Cu-matrix bonding bits and the diamond tool bits, the values were 644 MPa and 515.8 MPa respectively.


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1213 ◽  
Author(s):  
Bartosz Zegardło ◽  
Maciej Szeląg ◽  
Paweł Ogrodnik ◽  
Antoni Bombik

The paper presents an analysis of the possibility of using glass waste from worn out lighting materials as an aggregate for a polymer concrete. Glass waste was obtained from the company utilizing glass lighting elements, which was then subjected to crushing. The aggregate obtained was subjected to the tests of basic features, which were compared with aggregates that are traditionally applied to concretes. The next stage of the research program was the production of a polymer concrete that contained glass aggregate. Several types of mixtures were prepared in which glass waste was combined in various proportions with traditional sand–gravel aggregate. As a part of the research, the basic physical and mechanical characteristics of polymer concretes were determined. The microstructure of composites was also analyzed using a scanning electron microscope. The results of the research have shown that the aggregate obtained from glass waste can be successfully used for the production of a polymer concrete. The most beneficial physico-mechanical properties were obtained for a composite in which glass waste was used as a 50% substitute for traditional aggregate.


2017 ◽  
Vol 52 (8) ◽  
pp. 1061-1072 ◽  
Author(s):  
V Fiore ◽  
T Scalici ◽  
A Valenza

This paper deals with the evaluation of the effect of an eco-friendly and cost-effective surface treatment based on the use of sodium bicarbonate on the mechanical properties of flax-reinforced epoxy composites. To this aim, unidirectional fabrics were soaked for five days in 5 and 10% in weight of sodium bicarbonate solution at 25℃. Quasi-static and dynamic mechanical tests were performed and the fracture surfaces of the composites were analyzed through scanning electron microscopy. Results evidenced that this treatment improves the fiber–matrix adhesion thus increasing the performances of the composites. Treating the fabrics with 10% w/w of bicarbonate solution leads to improvements of ∼20 and ∼45% in tensile strength and modulus of the composites, respectively, compared to untreated ones. Furthermore, by increasing the concentration, negligible changes in the glass transition temperature and reductions in the tanδ peak heights were found. The observation of the fracture surfaces confirmed the beneficial effect of the proposed treatment.


2013 ◽  
Vol 771 ◽  
pp. 89-93 ◽  
Author(s):  
Shao Qin Ruan ◽  
Hong Wei Jiang ◽  
Yin Yin

This paper presents a study on the mechanical properties of rubber mortar with the inclusion SBRL (butylbenzene latex) and PP (polypropylene) fiber and the microstructures of SBR latex modified mortar were analyzed. The results proved for specimens with 20 vol.% of rubber, when the P/C of SBR latex was 10%, the compressive and flexural strength of SBR latex modified rubber mortar was optimal. Besides, for specimens with 20 vol.% of rubber, the compressive and flexural strength of SBR latex and polypropylene fiber modified rubber mortar increased with the inclusion of polypropylene fiber, especially when the P/C of SBR latex was 10%. Through scanning electron microscope (SEM), it was founded that polymer has formed a consecutive reticulate film which has a toughening effect on cement matrix.


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document