Supporting Technics of Easily Mudding and Ultrahigh Roadway in Soft Coal Rock

2014 ◽  
Vol 988 ◽  
pp. 211-217 ◽  
Author(s):  
Zhen Zhang

According to the situation of the great height wall, soft and weak surrounding rocks and sliming characteristics of the 15# coal west-third panel sump in the Gushuyuan mine, the deformation characteristics and mechanism of the sump were analyzed by field survey, laboratory tests and the numerical simulation method. The results show that the sump deformation and failure were determined by its low strength, weakness structural, sliming characteristics and excavation disturbance. The roadway deformation occurs mainly in the middle, upper and lower of the sides and the floor. A comprehensive solution is proposed, including sealing surrounding rocks, strengthening soft and weak surrounding rocks, strengthening the structure stability, improving the surrounding rocks stress environment. This method was applied in the coal mine. Field application results show that this method was suitable for control sump deformation, the maximum roadway roof subsidence is 15 mm, the two sides convergence is 30mm, and the maximum amount of floor heave is 21mm.

2013 ◽  
Vol 353-356 ◽  
pp. 436-439
Author(s):  
De Sen Kong ◽  
Yong Po Chen

In order to forecast the stability of deep roadway and optimize the parameters of bolts, the complex stress environment and the multivariate surrounding rocks characteristics of deep roadway were analyzed. Then the classification prediction method and the numerical simulation method were simultaneously used to analysis the stability of surrounding rocks. Furthermore, the supporting parameters of bolts were also designed optimally. It was shown that the characteristics of stress distribution, deformation and failure zone of surrounding rocks are not ideal. So it is necessary to optimize the supporting parameters of deep roadway. All these research findings will provide the theory basis for bolts of deep roadway and will ensure the optimization of bolts and the stability of deep roadway in the long run.


2013 ◽  
Vol 671-674 ◽  
pp. 1144-1149
Author(s):  
Le Tuan Cheng ◽  
Jia Lin Zhang ◽  
Zheng Sheng Zou ◽  
Qing Bo Li

B1 coal seam located at -550m level in Liangbei Coal Mine is a typical "three-soft" seam. The coal roadway with a depth of 610-750m lies under the critical softening depth of the roadway, and its support difficulty coefficient is 1.5-2.0. The coal has poor air permeability, high gas content and high gas pressure, so danger degree of the gas outburst is relatively strong. The coal seam was destroyed in a disastrous state by more than 100 boreholes for gas outburst prevention during the excavation. This results in the difficulty in the roadway support. Engineering geological characteristics of the coal roadway at 11 mining area are introduced. Based on the engineering geo-mechanics method, the reasons of deformation and failure of the coal roadway are analyzed. In view of problems in excavation and support, as well as the type of the coal roadway deformation mechanism, the borehole parameters are optimized for the gas outburst prevention, and bolt-net-cable coupling support with high convex steel-belt is used to control the coal roadway stability at 11 mining area. Practice shows that the effect is fine.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Jucai Chang ◽  
Dong Li ◽  
Tengfei Xie ◽  
Wenbao Shi ◽  
Kai He

With the increase in mining depth, the problem of the floor heave of a roadway is becoming increasingly prominent. Solving this problem for a deep high-stress roadway is the key to ensure safe supply and utilization of coal resources in China. This study investigates the floor heave of a horizontal transportation rock roadway at the depth of 960 m at the Xieyi Mine. A four-way loading simulation test frame similar to the Xieyi Mine was used to reproduce the high-stress environment of a deep roadway by loading different pressures on the roof, floor, and two sides of the roadway. The experimental results show that after the tunnel had been excavated, the surrounding rock failure could be divided into three stages: the initial deformation stage, fissure development stage, and mild deformation stage. The destruction time periods of these stages were 0–0.5 h, 0.5–2 h, and 2–6 h, and the destruction ranges were 0.4 m, 1 m, and 1.5 m, respectively. The amount of roof subsidence, the displacement of the two sides, and the floor heave influence each other, and the range of the bearing ring (5.6 m) of the floor is larger than that of the roof (3.4 m) after the surrounding rock has been damaged. The findings suggest that the floor should be supported first, before the two sides and the roof; then, the support of the key parts (roof and floor corners) should be strengthened. The roof, floor, and two sides are considered for controlling the deformation of the surrounding rock in a coupled trinity support mode. Because of the unfavorable conditions in the area, overexcavation backfill technology was used. The new support was successfully applied during the subsequent construction of the rock tunnel. Based on the long-term monitoring results of the surrounding rock deformation, the floor heave control yielded satisfactory results and maintained the long-term stability of the roadway. Therefore, this study can serve as a reference for preventing floor heave in similar high-stress roadways in the future.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1255-1259 ◽  
Author(s):  
Xue Xi Chen ◽  
Yan Ke Zhang ◽  
Yong Xu ◽  
Rui Qing Bi

According to the low intensity, good plasticity in soft coal seam, the effect of direct fracturing to increase permeability was not ideal, the new technology of hydraulic fracture soft coal rock was proposed, which increased coal seam permeability. Its technical principles and characteristics were researched. Water injection pressure was analyzed, including injection time, parameters of the technology and so on. Field application experiment and effect of inspection were conducted. The results showed that the concentration of gas extraction increased 4.3 times, and the gas extraction flow increased 6.2times. The technology has a good effect of fracturing and advantages in enlarging the released area and decreasing diffusion seepage resistance of coal seam. Most important, the technology has broad application prospects in soft coal seam.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yuantian Sun ◽  
Guichen Li ◽  
Junfei Zhang ◽  
Bicheng Yao ◽  
Deyu Qian ◽  
...  

The roadway deformation normally relates to time especially for underground coal roadway. The strength of soft coal is low, and therefore the deformation increases gradually under constant stress with time, which is called rheology deformation. In this study, based on a field case, the rock mass properties and deformation data of the roadway were obtained according to the field test. A 3D numerical model was then established, and the rheological deformation including horizontal and vertical deformation of the coal roadway was systematically analyzed. The results showed that the rheological deformation of horizontal sidewall accounts for almost 30% of the whole deformation, and the stable time for such roadway is around 60 days after excavation. The tendency of the roof deformation is similar to the sidewalls, and however, the floor deformation is different. Then the related suggestions for maintaining the stability of such roadway were proposed, which is useful in-field application.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3009 ◽  
Author(s):  
Housheng Jia ◽  
Luyao Wang ◽  
Kai Fan ◽  
Bo Peng ◽  
Kun Pan

This study considered the mining roadway with coal pillar protection in the fully mechanized caving face of the Dananhu No.1 Coal Mine, China. Theoretical analysis, numerical simulation, and field tests were conducted, and the stress environment, deformation, and failure characteristics of the mining roadway in the fully mechanized caving face were analyzed. The results revealed that the intrinsic cause for the large asymmetrical floor deformation in the mining roadway is the asymmetrical phenomenon of the surrounding rock’s stress environment, caused by mining. This also results in the non-uniform distribution of the mining roadway floor’s plastic zone. The degree of asymmetrical floor heave is internally related to the thickness of the caving coal. When the thickness of the caving coal was in the range of 5.9 m, the deformation of the asymmetrical floor heave, caused by the plastic failure in the floor, became more obvious as certain parameters increased. As the rotation angle of the principal stress direction increased, the maximum plastic failure depth position of the floor gradually moved toward the middle of the roadway. This caused a different distribution for the maximum deformation position. The control of the floor heave deformation was poor, and it was not feasible to use high-strength support under the existing engineering conditions. Hence, the control should mainly be applied to the floor heave deformation. When the thickness of the caving coal was more than 5.9 m, the main roof strata was prone to instability and being cut along the edge of the coal pillar; the rock stress environment surrounding the roadway tended to revert back to the initial geostress state. The proposed floor heave control strategy achieved good results, and as the deformation of the floor heave decreased, the workload of the floor heave was also greatly reduced.


2020 ◽  
Vol 198 ◽  
pp. 01038
Author(s):  
LI Liangwei

In order to guide the field application of hydraulic fracturing of soft coal in coal mine, based on the elastic-plastic damage theory, the coupling numerical model of soft coal hydraulic fracturing seepage was studied. The porosity strain relationship equation, permeability strain relationship equation, the relationship between permeability and volume plastic tensile strain and volume plastic shear strain of coal and rock mass are derived, and the plastic correction equation and softening parameters are defined. The stress coupling equation and yield criterion are programmed and embedded into the finite difference software FLAC3D for numerical solution. The numerical simulation shows that the numerical calculation model of soft coal hydraulic fracturing conforms to the actual law, and the field fracturing radius investigation experiment is consistent with the numerical simulation results.


2013 ◽  
Vol 724-725 ◽  
pp. 1520-1525
Author(s):  
Ji Cheng Feng ◽  
Hong Jiao Li ◽  
Zhi Chao Zhao ◽  
Wen Long Zhang

In order to control the deformation of large section surrounding rock in 700m level of the main drainage pumping station in the experimental mine, according to the reason for deformation and failure of the main drainage pumping station and material mechanics, fully-closed U-shaped support which used double welding I-steel bottom arch as the main structure was designed and the assembly and principles of support were described in detail, based on theoretical calculation and comparative analysis on the structure and mechanical properties of rectangular I-beam support, U-steel support, single I-beam arch support and double I-beam arch support. Based on the comparative analysis by numerical simulation, the rationality of the high strength support and the detailed support parameters were determined. It gets good effect in field application and ensures the long-term stability of the main drainage pumping station. The results show that: the double-layer I-beam 12# can increase bending strength by about 7.5 times. Double trough splint device used in shoulder of the support has the advantages of high strength, greater rigidity, good pliability and stable working resistance.


Fractals ◽  
2020 ◽  
Vol 28 (05) ◽  
pp. 2050092 ◽  
Author(s):  
RAN ZHANG ◽  
JIE LIU ◽  
ZHANYOU SA ◽  
ZAIQUAN WANG ◽  
SHOUQING LU ◽  
...  

Coal–rock dynamic disasters seriously threaten safe production in coal mines, and an effective early warning is especially important to reduce the losses caused by these disasters. The occurrence of coal–rock dynamic disasters is determined by mining-induced stress loading and unloading. Therefore, it is of great significance to analyze the precursory information of coal deformation and failure during true triaxial stress loading and unloading. In this study, the deformation and failure of coal samples subjected to true triaxial loading and unloading, including fixed axial stress and unloading confining stress (FASUCS), are experimentally investigated. Meanwhile, acoustic emission (AE) during the deformation of coal samples is monitored, and the multi-fractal characteristics of AE are analyzed. Furthermore, combined with the deformation and failure of coal samples, the precursory information of coal deformation and rupture during true triaxial stress loading and unloading is obtained. Finally, the relationship between multi-fractal characteristics and damage evolution of coal samples under FASUCS is discussed. The results show that the multi-fractal spectral widths of AE time series under the conditions of FASUCS with different initial confining stresses or unloading rates are quite different, but the dynamic changes of multi-fractal parameters [Formula: see text] and [Formula: see text] are similar. This indicates that the microscopic complexity of AE events of coal samples under different conditions of FASUCS differs, but the macroscopic generation mechanism of AE events has inherent uniformity. The dynamic changes of [Formula: see text] and [Formula: see text] can reflect the stress and damage degree of coal samples. The dynamic change process of [Formula: see text] well accords with the damage evolution process of coal samples. A gradual decrease of [Formula: see text] corresponds to a slow increase of damage, while a sharp increase of it corresponds to a rapid growth of damage. At the same time, the mutation point of damage curve at distinct stress difference levels shares the same variation trend with the [Formula: see text] mutation point. The change of [Formula: see text] can reflect the damage process of coal samples, which can be used as precursor information for predicting coal–rock rupture. The finding is of great significance for the early warning of coal–rock dynamic disasters.


Sign in / Sign up

Export Citation Format

Share Document