Engineered Biomimetic Nanofibers for Regenerative Medicine

2010 ◽  
Vol 76 ◽  
pp. 114-124
Author(s):  
Seeram Ramakrishna ◽  
Jayarama Reddy Venugopal ◽  
Susan Liao

Attempts have been made to fabricate nanofibrous scaffolds to mimic the chemical composition and structural properties of extracellular matrix (ECM) for tissue/organ regeneration. Nanofibers with various patterns have been successfully produced from synthetic and natural polymers through a relatively simple technique of electrospinning. The resulting patterns can mimic some of the diverse tissue-specific orientation and three-dimensional (3D) fibrous structure. Studies on cell-nanofiber interactions have revealed the importance of nanotopography on cell adhesion, proliferation and differentiation. Our recent data showed that hematopoietic stem cells (HSCs) as well as mesenchymal stem cells (MSCs) can rapidly and effectively attached to the functionalized nanofibers. Mineralized 3D nanofibrous scaffold with bone marrow derived MSCs has been applied for bone tissue engineering. The use of injectable nanofibers for cardiac tissue engineering applications is attractive as they allow for the encapsulation of cardiomyocytes/MSCs as well as bioactive molecules for the repair of myocardial infarction. Duplicate 3D heart helix microstructure by the nanofibrous cardiac patch might provide functional support for infarcted myocardium. Furthermore, clinical applications of electrospun nanofibers for regenerative medicine are highly feasible due to the ease and flexibility of fabrication with the cost-effective method of making nanofibers.

Biosensors ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Hojjatollah Nazari ◽  
Asieh Heirani-Tabasi ◽  
Sadegh Ghorbani ◽  
Hossein Eyni ◽  
Sajad Razavi Bazaz ◽  
...  

Microfluidics is a promising approach for the facile and large-scale fabrication of monodispersed droplets for various applications in biomedicine. This technology has demonstrated great potential to address the limitations of regenerative medicine. Microfluidics provides safe, accurate, reliable, and cost-effective methods for encapsulating different stem cells, gametes, biomaterials, biomolecules, reagents, genes, and nanoparticles inside picoliter-sized droplets or droplet-derived microgels for different applications. Moreover, microenvironments made using such droplets can mimic niches of stem cells for cell therapy purposes, simulate native extracellular matrix (ECM) for tissue engineering applications, and remove challenges in cell encapsulation and three-dimensional (3D) culture methods. The fabrication of droplets using microfluidics also provides controllable microenvironments for manipulating gametes, fertilization, and embryo cultures for reproductive medicine. This review focuses on the relevant studies, and the latest progress in applying droplets in stem cell therapy, tissue engineering, reproductive biology, and gene therapy are separately evaluated. In the end, we discuss the challenges ahead in the field of microfluidics-based droplets for advanced regenerative medicine.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1609 ◽  
Author(s):  
Simin Nazarnezhad ◽  
Francesco Baino ◽  
Hae-Won Kim ◽  
Thomas J. Webster ◽  
Saeid Kargozar

Angiogenesis (or the development of new blood vessels) is a key event in tissue engineering and regenerative medicine; thus, a number of biomaterials have been developed and combined with stem cells and/or bioactive molecules to produce three-dimensional (3D) pro-angiogenic constructs. Among the various biomaterials, electrospun nanofibrous scaffolds offer great opportunities for pro-angiogenic approaches in tissue repair and regeneration. Nanofibers made of natural and synthetic polymers are often used to incorporate bioactive components (e.g., bioactive glasses (BGs)) and load biomolecules (e.g., vascular endothelial growth factor (VEGF)) that exert pro-angiogenic activity. Furthermore, seeding of specific types of stem cells (e.g., endothelial progenitor cells) onto nanofibrous scaffolds is considered as a valuable alternative for inducing angiogenesis. The effectiveness of these strategies has been extensively examined both in vitro and in vivo and the outcomes have shown promise in the reconstruction of hard and soft tissues (mainly bone and skin, respectively). However, the translational of electrospun scaffolds with pro-angiogenic molecules or cells is only at its beginning, requiring more research to prove their usefulness in the repair and regeneration of other highly-vascularized vital tissues and organs. This review will cover the latest progress in designing and developing pro-angiogenic electrospun nanofibers and evaluate their usefulness in a tissue engineering and regenerative medicine setting.


2012 ◽  
Vol 303 (2) ◽  
pp. H133-H143 ◽  
Author(s):  
Thomas Eschenhagen ◽  
Alexandra Eder ◽  
Ingra Vollert ◽  
Arne Hansen

Cardiac tissue engineering aims at repairing the diseased heart and developing cardiac tissues for basic research and predictive toxicology applications. Since the first description of engineered heart tissue 15 years ago, major development steps were directed toward these three goals. Technical innovations led to improved three-dimensional cardiac tissue structure and near physiological contractile force development. Automation and standardization allow medium throughput screening. Larger constructs composed of many small engineered heart tissues or stacked cell sheet tissues were tested for cardiac repair and were associated with functional improvements in rats. Whether these approaches can be simply transferred to larger animals or the human patients remains to be tested. The availability of an unrestricted human cardiac myocyte cell source from human embryonic stem cells or human-induced pluripotent stem cells is a major breakthrough. This review summarizes current tissue engineering techniques with their strengths and limitations and possible future applications.


2007 ◽  
Vol 4 (17) ◽  
pp. 999-1030 ◽  
Author(s):  
J.F Mano ◽  
G.A Silva ◽  
H.S Azevedo ◽  
P.B Malafaya ◽  
R.A Sousa ◽  
...  

The fields of tissue engineering and regenerative medicine aim at promoting the regeneration of tissues or replacing failing or malfunctioning organs, by means of combining a scaffold/support material, adequate cells and bioactive molecules. Different materials have been proposed to be used as both three-dimensional porous scaffolds and hydrogel matrices for distinct tissue engineering strategies. Among them, polymers of natural origin are one of the most attractive options, mainly due to their similarities with the extracellular matrix (ECM), chemical versatility as well as typically good biological performance. In this review, the most studied and promising and recently proposed naturally derived polymers that have been suggested for tissue engineering applications are described. Different classes of such type of polymers and their blends with synthetic polymers are analysed, with special focus on polysaccharides and proteins, the systems that are more inspired by the ECM. The adaptation of conventional methods or non-conventional processing techniques for processing scaffolds from natural origin based polymers is reviewed. The use of particles, membranes and injectable systems from such kind of materials is also overviewed, especially what concerns the present status of the research that should lead towards their final application. Finally, the biological performance of tissue engineering constructs based on natural-based polymers is discussed, using several examples for different clinically relevant applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yuji Haraguchi ◽  
Akiyuki Hasegawa ◽  
Katsuhisa Matsuura ◽  
Mari Kobayashi ◽  
Shin-ichi Iwana ◽  
...  

Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for aiming the clinical application, 3D human cardiac tissues were rapidly fabricated by human induced pluripotent stem (iPS) cell-derived cardiac cell sheets with centrifugation, and the structures and beatings in the cardiac tissues were observed cross-sectionally and noninvasively by two optical coherence tomography (OCT) systems. The fabrication time was reduced to approximately one-quarter by centrifugation. The cross-sectional observation showed that multilayered cardiac cell sheets adhered tightly just after centrifugation. Additionally, the cross-sectional transmissions of beatings within multilayered human cardiac tissues were clearly detected by OCT. The observation showed the synchronous beatings of the thicker 3D human cardiac tissues, which were fabricated rapidly by cell sheet technology and centrifugation. The rapid tissue-fabrication technique and OCT technology will show a powerful potential in cardiac tissue engineering, regenerative medicine, and drug discovery research.


2020 ◽  
Vol 26 (7) ◽  
pp. 1313-1334 ◽  
Author(s):  
Nataraj Poomathi ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
Arjun Subramanian ◽  
Rahul Sahay ◽  
...  

Purpose In the past decade, three-dimensional (3D) printing has gained attention in areas such as medicine, engineering, manufacturing art and most recently in education. In biomedical, the development of a wide range of biomaterials has catalysed the considerable role of 3D printing (3DP), where it functions as synthetic frameworks in the form of scaffolds, constructs or matrices. The purpose of this paper is to present the state-of-the-art literature coverage of 3DP applications in tissue engineering (such as customized scaffoldings and organs, and regenerative medicine). Design/methodology/approach This review focusses on various 3DP techniques and biomaterials for tissue engineering (TE) applications. The literature reviewed in the manuscript has been collected from various journal search engines including Google Scholar, Research Gate, Academia, PubMed, Scopus, EMBASE, Cochrane Library and Web of Science. The keywords that have been selected for the searches were 3 D printing, tissue engineering, scaffoldings, organs, regenerative medicine, biomaterials, standards, applications and future directions. Further, the sub-classifications of the keyword, wherever possible, have been used as sectioned/sub-sectioned in the manuscript. Findings 3DP techniques have many applications in biomedical and TE (B-TE), as covered in the literature. Customized structures for B-TE applications are easy and cost-effective to manufacture through 3DP, whereas on many occasions, conventional technologies generally become incompatible. For this, this new class of manufacturing must be explored to further capabilities for many potential applications. Originality/value This review paper presents a comprehensive study of the various types of 3DP technologies in the light of their possible B-TE application as well as provides a future roadmap.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 176 ◽  
Author(s):  
Reza Mohammadinejad ◽  
Anuj Kumar ◽  
Marziyeh Ranjbar-Mohammadi ◽  
Milad Ashrafizadeh ◽  
Sung Soo Han ◽  
...  

The engineering of tissues under a three-dimensional (3D) microenvironment is a great challenge and needs a suitable supporting biomaterial-based scaffold that may facilitate cell attachment, spreading, proliferation, migration, and differentiation for proper tissue regeneration or organ reconstruction. Polysaccharides as natural polymers promise great potential in the preparation of a three-dimensional artificial extracellular matrix (ECM) (i.e., hydrogel) via various processing methods and conditions. Natural polymers, especially gums, based upon hydrogel systems, provide similarities largely with the native ECM and excellent biological response. Here, we review the origin and physico-chemical characteristics of potentially used natural gums. In addition, various forms of scaffolds (e.g., nanofibrous, 3D printed-constructs) based on gums and their efficacy in 3D cell culture and various tissue regenerations such as bone, osteoarthritis and cartilage, skin/wound, retinal, neural, and other tissues are discussed. Finally, the advantages and limitations of natural gums are precisely described for future perspectives in tissue engineering and regenerative medicine in the concluding remarks.


2020 ◽  
Vol 8 (11) ◽  
pp. 3173-3185 ◽  
Author(s):  
Boguang Yang ◽  
Fanglian Yao ◽  
Lei Ye ◽  
Tong Hao ◽  
Yabin Zhang ◽  
...  

The development of three-dimensional conductive scaffolds is vital to support the adhesion, proliferation and myocardial differentiation of stem cells in cardiac tissue engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Shanshan Han ◽  
Kexin Nie ◽  
Jingchao Li ◽  
Qingqing Sun ◽  
Xiaofeng Wang ◽  
...  

Electrospun nanofibers have been frequently used for tissue engineering due to their morphological similarities with the extracellular matrix (ECM) and tunable chemical and physical properties for regulating cell behaviors and functions. However, most of the existing electrospun nanofibers have a closely packed two-dimensional (2D) membrane with the intrinsic shortcomings of limited cellular infiltration, restricted nutrition diffusion, and unsatisfied thickness. Three-dimensional (3D) electrospun nanofiber-based scaffolds can provide stem cells with 3D microenvironments and biomimetic fibrous structures. Thus, they have been demonstrated to be good candidates for in vivo repair of different tissues. This review summarizes the recent developments in 3D electrospun nanofiber-based scaffolds (ENF-S) for tissue engineering. Three types of 3D ENF-S fabricated using different approaches classified into electrospun nanofiber 3D scaffolds, electrospun nanofiber/hydrogel composite 3D scaffolds, and electrospun nanofiber/porous matrix composite 3D scaffolds are discussed. New functions for these 3D ENF-S and properties, such as facilitated cell infiltration, 3D fibrous architecture, enhanced mechanical properties, and tunable degradability, meeting the requirements of tissue engineering scaffolds were discovered. The applications of 3D ENF-S in cartilage, bone, tendon, ligament, skeletal muscle, nerve, and cardiac tissue regeneration are then presented with a discussion of current challenges and future directions. Finally, we give summaries and future perspectives of 3D ENF-S in tissue engineering and clinical transformation.


Sign in / Sign up

Export Citation Format

Share Document