3D printing in tissue engineering: a state of the art review of technologies and biomaterials

2020 ◽  
Vol 26 (7) ◽  
pp. 1313-1334 ◽  
Author(s):  
Nataraj Poomathi ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
Arjun Subramanian ◽  
Rahul Sahay ◽  
...  

Purpose In the past decade, three-dimensional (3D) printing has gained attention in areas such as medicine, engineering, manufacturing art and most recently in education. In biomedical, the development of a wide range of biomaterials has catalysed the considerable role of 3D printing (3DP), where it functions as synthetic frameworks in the form of scaffolds, constructs or matrices. The purpose of this paper is to present the state-of-the-art literature coverage of 3DP applications in tissue engineering (such as customized scaffoldings and organs, and regenerative medicine). Design/methodology/approach This review focusses on various 3DP techniques and biomaterials for tissue engineering (TE) applications. The literature reviewed in the manuscript has been collected from various journal search engines including Google Scholar, Research Gate, Academia, PubMed, Scopus, EMBASE, Cochrane Library and Web of Science. The keywords that have been selected for the searches were 3 D printing, tissue engineering, scaffoldings, organs, regenerative medicine, biomaterials, standards, applications and future directions. Further, the sub-classifications of the keyword, wherever possible, have been used as sectioned/sub-sectioned in the manuscript. Findings 3DP techniques have many applications in biomedical and TE (B-TE), as covered in the literature. Customized structures for B-TE applications are easy and cost-effective to manufacture through 3DP, whereas on many occasions, conventional technologies generally become incompatible. For this, this new class of manufacturing must be explored to further capabilities for many potential applications. Originality/value This review paper presents a comprehensive study of the various types of 3DP technologies in the light of their possible B-TE application as well as provides a future roadmap.

2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Erfan Rezvani Ghomi ◽  
Saeideh Kholghi Eshkalak ◽  
Sunpreet Singh ◽  
Amutha Chinnappan ◽  
Seeram Ramakrishna ◽  
...  

Purpose The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues. Design/methodology/approach Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK. Findings The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics. Originality/value The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.


2019 ◽  
Vol 9 (17) ◽  
pp. 3540 ◽  
Author(s):  
Ferdows Afghah ◽  
Caner Dikyol ◽  
Mine Altunbek ◽  
Bahattin Koc

Melt electrospinning writing has been emerged as a promising technique in the field of tissue engineering, with the capability of fabricating controllable and highly ordered complex three-dimensional geometries from a wide range of polymers. This three-dimensional (3D) printing method can be used to fabricate scaffolds biomimicking extracellular matrix of replaced tissue with the required mechanical properties. However, controlled and homogeneous cell attachment on melt electrospun fibers is a challenge. The combination of melt electrospinning writing with other tissue engineering approaches, called hybrid biomanufacturing, has introduced new perspectives and increased its potential applications in tissue engineering. In this review, principles and key parameters, challenges, and opportunities of melt electrospinning writing, and particularly, recent approaches and materials in this field are introduced. Subsequently, hybrid biomanufacturing strategies are presented for improved biological and mechanical properties of the manufactured porous structures. An overview of the possible hybrid setups and applications, future perspective of hybrid processes, guidelines, and opportunities in different areas of tissue/organ engineering are also highlighted.


2010 ◽  
Vol 76 ◽  
pp. 114-124
Author(s):  
Seeram Ramakrishna ◽  
Jayarama Reddy Venugopal ◽  
Susan Liao

Attempts have been made to fabricate nanofibrous scaffolds to mimic the chemical composition and structural properties of extracellular matrix (ECM) for tissue/organ regeneration. Nanofibers with various patterns have been successfully produced from synthetic and natural polymers through a relatively simple technique of electrospinning. The resulting patterns can mimic some of the diverse tissue-specific orientation and three-dimensional (3D) fibrous structure. Studies on cell-nanofiber interactions have revealed the importance of nanotopography on cell adhesion, proliferation and differentiation. Our recent data showed that hematopoietic stem cells (HSCs) as well as mesenchymal stem cells (MSCs) can rapidly and effectively attached to the functionalized nanofibers. Mineralized 3D nanofibrous scaffold with bone marrow derived MSCs has been applied for bone tissue engineering. The use of injectable nanofibers for cardiac tissue engineering applications is attractive as they allow for the encapsulation of cardiomyocytes/MSCs as well as bioactive molecules for the repair of myocardial infarction. Duplicate 3D heart helix microstructure by the nanofibrous cardiac patch might provide functional support for infarcted myocardium. Furthermore, clinical applications of electrospun nanofibers for regenerative medicine are highly feasible due to the ease and flexibility of fabrication with the cost-effective method of making nanofibers.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoming Li ◽  
Rongrong Cui ◽  
Lianwen Sun ◽  
Katerina E. Aifantis ◽  
Yubo Fan ◽  
...  

3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.


Biomimetics ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 4 ◽  
Author(s):  
Marloes Peeters ◽  
Patricia Linton ◽  
Araida Hidalgo-Bastida

The Bioinspired Materials conference 2018 was organized for the third time by a team of researchers from Manchester Metropolitan University. This international conference aims to bring together the scientific committee in the fields of biomimetic sensors, bioinspired materials, materials chemistry, three-dimensional (3D) printing, and tissue engineering. The 2018 edition was held at the John Dalton Building of Manchester Metropolitan University, Manchester, UK, and took place on the 10th of October 2018. There were over 60 national and international attendees, with the international attendees participating in a lab tour through the synthetic facilities and Fuel Cell Innovation Centre on the 9th of October. The three conference sessions encompassed a wide range of topics, varying from biomimetic sensors, hydrogels, and biofabrics and bioengineering.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 92
Author(s):  
Natalia Menshutina ◽  
Andrey Abramov ◽  
Pavel Tsygankov ◽  
Daria Lovskaya

Three-dimensional (3D) printing is a promising technology for solving a wide range of problems: regenerative medicine, tissue engineering, chemistry, etc. One of the potential applications of additive technologies is the production of highly porous structures with complex geometries, while printing is carried out using gel-like materials. However, the implementation of precise gel printing is a difficult task due to the high requirements for “ink”. In this paper, we propose the use of gel-like materials based on sodium alginate as “ink” for the implementation of the developed technology of extrusion-based 3D printing. Rheological studies were carried out for the developed alginate ink compositions. The optimal rheological properties are gel-like materials based on 2 wt% sodium alginate and 0.2 wt% calcium chloride. The 3D-printed structures with complex geometry were successfully dried using supercritical drying. The resulting aerogels have a high specific surface area (from 350 to 422 m2/g) and a high pore volume (from 3 to 3.78 cm3/g).


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Tanveer Ahmad Mir ◽  
Shintaroh Iwanaga ◽  
Taketoshi Kurooka ◽  
Hideki Toda ◽  
Shinji Sakai ◽  
...  

Biofabrication is an emerging multidisciplinary field that makes a revolutionary impact on the researches on life science, biomedical engineering, and both basic and clinical medicine, has progressed tremendously over the past few years. Recently, there has been a big boom in three-dimensional (3D) printing or additive manufacturing (AM) research worldwide, and there is a significant increase not only in the number of researchers turning their attention to AM but also publications demonstrating the potential applications of 3D printing techniques in multiple fields. Biofabrication and bioprinting hold great promise for the innovation of engineering-based organ replacing medicine. In this mini review, various challenges in the field of tissue engineering are focused from the point of view of the biofabrication - strategies to bridge the gap between organ shortage and mission of medical innovation research seek to achieve organ-specific treatments or regenerative therapies. Four major challenges are discussed including (i) challenge of producing organs by AM, (ii) digitalization of tissue engineering and regenerative medicine, (iii) rapid production of organs beyond the biological natural course, and (iv) extracorporeal organ engineering.


Biosensors ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Hojjatollah Nazari ◽  
Asieh Heirani-Tabasi ◽  
Sadegh Ghorbani ◽  
Hossein Eyni ◽  
Sajad Razavi Bazaz ◽  
...  

Microfluidics is a promising approach for the facile and large-scale fabrication of monodispersed droplets for various applications in biomedicine. This technology has demonstrated great potential to address the limitations of regenerative medicine. Microfluidics provides safe, accurate, reliable, and cost-effective methods for encapsulating different stem cells, gametes, biomaterials, biomolecules, reagents, genes, and nanoparticles inside picoliter-sized droplets or droplet-derived microgels for different applications. Moreover, microenvironments made using such droplets can mimic niches of stem cells for cell therapy purposes, simulate native extracellular matrix (ECM) for tissue engineering applications, and remove challenges in cell encapsulation and three-dimensional (3D) culture methods. The fabrication of droplets using microfluidics also provides controllable microenvironments for manipulating gametes, fertilization, and embryo cultures for reproductive medicine. This review focuses on the relevant studies, and the latest progress in applying droplets in stem cell therapy, tissue engineering, reproductive biology, and gene therapy are separately evaluated. In the end, we discuss the challenges ahead in the field of microfluidics-based droplets for advanced regenerative medicine.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 366 ◽  
Author(s):  
Vahid Serpooshan ◽  
Murat Guvendiren

Three-dimensional (3D) bioprinting uses additive manufacturing techniques to fabricate 3D structures consisting of heterogenous selections of living cells, biomaterials, and active biomolecules [...]


Sign in / Sign up

Export Citation Format

Share Document