scholarly journals Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 176 ◽  
Author(s):  
Reza Mohammadinejad ◽  
Anuj Kumar ◽  
Marziyeh Ranjbar-Mohammadi ◽  
Milad Ashrafizadeh ◽  
Sung Soo Han ◽  
...  

The engineering of tissues under a three-dimensional (3D) microenvironment is a great challenge and needs a suitable supporting biomaterial-based scaffold that may facilitate cell attachment, spreading, proliferation, migration, and differentiation for proper tissue regeneration or organ reconstruction. Polysaccharides as natural polymers promise great potential in the preparation of a three-dimensional artificial extracellular matrix (ECM) (i.e., hydrogel) via various processing methods and conditions. Natural polymers, especially gums, based upon hydrogel systems, provide similarities largely with the native ECM and excellent biological response. Here, we review the origin and physico-chemical characteristics of potentially used natural gums. In addition, various forms of scaffolds (e.g., nanofibrous, 3D printed-constructs) based on gums and their efficacy in 3D cell culture and various tissue regenerations such as bone, osteoarthritis and cartilage, skin/wound, retinal, neural, and other tissues are discussed. Finally, the advantages and limitations of natural gums are precisely described for future perspectives in tissue engineering and regenerative medicine in the concluding remarks.

2010 ◽  
Vol 76 ◽  
pp. 114-124
Author(s):  
Seeram Ramakrishna ◽  
Jayarama Reddy Venugopal ◽  
Susan Liao

Attempts have been made to fabricate nanofibrous scaffolds to mimic the chemical composition and structural properties of extracellular matrix (ECM) for tissue/organ regeneration. Nanofibers with various patterns have been successfully produced from synthetic and natural polymers through a relatively simple technique of electrospinning. The resulting patterns can mimic some of the diverse tissue-specific orientation and three-dimensional (3D) fibrous structure. Studies on cell-nanofiber interactions have revealed the importance of nanotopography on cell adhesion, proliferation and differentiation. Our recent data showed that hematopoietic stem cells (HSCs) as well as mesenchymal stem cells (MSCs) can rapidly and effectively attached to the functionalized nanofibers. Mineralized 3D nanofibrous scaffold with bone marrow derived MSCs has been applied for bone tissue engineering. The use of injectable nanofibers for cardiac tissue engineering applications is attractive as they allow for the encapsulation of cardiomyocytes/MSCs as well as bioactive molecules for the repair of myocardial infarction. Duplicate 3D heart helix microstructure by the nanofibrous cardiac patch might provide functional support for infarcted myocardium. Furthermore, clinical applications of electrospun nanofibers for regenerative medicine are highly feasible due to the ease and flexibility of fabrication with the cost-effective method of making nanofibers.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5795
Author(s):  
Adam Chyzy ◽  
Marta E. Plonska-Brzezinska

Hydrogels (HGs), as three-dimensional structures, are widely used in modern medicine, including regenerative medicine. The use of HGs in wound treatment and tissue engineering is a rapidly developing sector of medicine. The unique properties of HGs allow researchers to easily modify them to maximize their potential. Herein, we describe the physicochemical properties of HGs, which determine their subsequent applications in regenerative medicine and tissue engineering. Examples of chemical modifications of HGs and their applications are described based on the latest scientific reports.


2019 ◽  
Vol 9 (17) ◽  
pp. 3540 ◽  
Author(s):  
Ferdows Afghah ◽  
Caner Dikyol ◽  
Mine Altunbek ◽  
Bahattin Koc

Melt electrospinning writing has been emerged as a promising technique in the field of tissue engineering, with the capability of fabricating controllable and highly ordered complex three-dimensional geometries from a wide range of polymers. This three-dimensional (3D) printing method can be used to fabricate scaffolds biomimicking extracellular matrix of replaced tissue with the required mechanical properties. However, controlled and homogeneous cell attachment on melt electrospun fibers is a challenge. The combination of melt electrospinning writing with other tissue engineering approaches, called hybrid biomanufacturing, has introduced new perspectives and increased its potential applications in tissue engineering. In this review, principles and key parameters, challenges, and opportunities of melt electrospinning writing, and particularly, recent approaches and materials in this field are introduced. Subsequently, hybrid biomanufacturing strategies are presented for improved biological and mechanical properties of the manufactured porous structures. An overview of the possible hybrid setups and applications, future perspective of hybrid processes, guidelines, and opportunities in different areas of tissue/organ engineering are also highlighted.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shizuka Yamada ◽  
Kohei Yamamoto ◽  
Takeshi Ikeda ◽  
Kajiro Yanagiguchi ◽  
Yoshihiko Hayashi

Cells, growth factors, and scaffold are the crucial factors for tissue engineering. Recently, scaffolds consisting of natural polymers, such as collagen and gelatin, bioabsorbable synthetic polymers, such as polylactic acid and polyglycolic acid, and inorganic materials, such as hydroxyapatite, as well as composite materials have been rapidly developed. In particular, collagen is the most promising material for tissue engineering due to its biocompatibility and biodegradability. Collagen contains specific cell adhesion domains, including the arginine-glycine-aspartic acid (RGD) motif. After the integrin receptor on the cell surface binds to the RGD motif on the collagen molecule, cell adhesion is actively induced. This interaction contributes to the promotion of cell growth and differentiation and the regulation of various cell functions. However, it is difficult to use a pure collagen scaffold as a tissue engineering material due to its low mechanical strength. In order to make up for this disadvantage, collagen scaffolds are often modified using a cross-linker, such as gamma irradiation and carbodiimide. Taking into account the possibility of zoonosis, a variety of recent reports have been documented using fish collagen scaffolds. We herein review the potency of fish collagen scaffolds as well as associated problems to be addressed for use in regenerative medicine.


Author(s):  
I. M. Sebastine ◽  
D. J. Williams

Tissue engineering aims to restore the complex function of diseased tissue using cells and scaffold materials. Tissue engineering scaffolds are three-dimensional (3D) structures that assist in the tissue engineering process by providing a site for cells to attach, proliferate, differentiate and secrete an extra-cellular matrix, eventually leading cells to form a neo-tissue of predetermined, three-dimensional shape and size. For a scaffold to function effectively, it must possess the optimum structural parameters conducive to the cellular activities that lead to tissue formation; these include cell penetration and migration into the scaffold, cell attachment onto the scaffold substrate, cell spreading and proliferation and cell orientation. In vivo, cells are organized in functional tissue units that repeat on the order of 100 μm. Fine scaffold features have been shown to provide control over attachment, migration and differentiation of cells. In order to design such 3D featured constructs effectively understanding the biological response of cells across length scales from nanometer to millimeter range is crucial. Scaffold biomaterials may need to be tailored at three different length scales: nanostructure (<1μm), microstructure (<20–100μm), and macrostructure (>100μm) to produce biocompatible and biofunctional scaffolds that closely resemble the extracellular matrix (ECM) of the natural tissue environment and promote cell adhesion, attachment, spreading, orientation, rate of movement, and activation. Identification of suitable fabrication techniques for manufacturing scaffolds with the required features at multiple scales is a significant challenge. This review highlights the effect and importance of the features of scaffolds that can influence the behaviour of cells/tissue at different length scales in vitro to increase our understanding of the requirements for the manufacture of functional 3D tissue constructs.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Yuji Haraguchi ◽  
Tatsuya Shimizu ◽  
Masayuki Yamato ◽  
Teruo Okano

At present, cardiac diseases are a major cause of morbidity and mortality in the world. Recently, a cell-based regenerative medicine has appeared as one of the most potential and promising therapies for improving cardiac diseases. As a new generational cell-based regenerative therapy, tissue engineering is focused. Our laboratory has originally developed cell sheet-based scaffold-free tissue engineering. Three-dimensional myocardial tissue fabricated by stacking cardiomyocyte sheets, which are tightly interconnected to each other through gap junctions, beats simultaneously and macroscopically and shows the characteristic structures of native heart tissue. Cell sheet-based therapy cures the damaged heart function of animal models and is clinically applied. Cell sheet-based tissue engineering has a promising and enormous potential in myocardial tissue regenerative medicine and will cure many patients suffering from severe cardiac disease. This paper summarizes cell sheet-based tissue engineering and its satisfactory therapeutic effects on cardiac disease.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Birong Wang ◽  
Qinggang Hu ◽  
Tao Wan ◽  
Fengxiao Yang ◽  
Le Cui ◽  
...  

Galactosylated chitosan (CTS) has been widely applied in liver tissue engineering as scaffold. However, the influence of degree of substitution (DS) of galactose moieties on cell attachment and mechanical stability is not clear. In this study, we synthesized the lactose-modified chitosan (Lact-CTS) with various DS of galactose moieties by Schiff base reaction and reducing action of NaBH4, characterized by FTIR. The DS of Lact-CTS-1, Lact-CTS-2, and Lact-CTS-3 was 19.66%, 48.62%, and 66.21% through the method of potentiometric titration. The cell attachment of hepatocytes on the CTS and Lact-CTS films was enhanced accompanied with the increase of galactose moieties on CTS chain because of the galactose ligand-receptor recognition; however, the mechanical stability of Lact-CTS-3 was reduced contributing to the extravagant hydrophilicity, which was proved using the sessile drop method. Then, the three-dimensional Lact-CTS scaffolds were fabricated by freezing-drying technique. The SEM images revealed the homogeneous pore bearing the favorable connectivity and the pore sizes of scaffolds with majority of 100 μm; however, the extract solution of Lact-CTS-3 scaffold significantly damaged red blood cells by hemolysis assay, indicating that exorbitant DS of Lact-CTS-3 decreased the mechanical stability and increased the toxicity. To sum up, the Lact-CTS-2 with 48.62% of galactose moieties could facilitate the cell attachment and possess great biocompatibility and mechanical stability, indicating that Lact-CTS-2 was a promising material for liver tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document