The Effect of the Drying Temperature on the Moisture Removal and Mechanical Properties of Sisal Fibers

2017 ◽  
Vol 380 ◽  
pp. 66-71 ◽  
Author(s):  
D. Gomes dos Santos ◽  
A.G. Barbosa de Lima ◽  
P. de Sousa Costa

Vegetable fibers have been used in most several applications, as raw material, for manufacturing of different products or directly as reinforcement in composite materials. Green fibers are wet, what requires its drying before their use.In this sense, the aim of this work is to study drying of the sisal fibers in oven. Drying experiments were carried out at different drying condition. It was evaluated the curves of moisture content, drying and heating rates and temperature, as well as the influence of the drying temperature on the mechanical properties of the fibers. It was found that the drying temperature (60 - 105°C) had no significant influence on the tensile mechanical properties, elongation at rupture and modulus of elasticity of the sisal fibers.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2636
Author(s):  
Petr Valášek ◽  
Miroslav Müller ◽  
Vladimír Šleger ◽  
Viktor Kolář ◽  
Monika Hromasová ◽  
...  

Composite materials with natural fillers have been increasingly used as an alternative to synthetically produced materials. This trend is visible from a representation of polymeric composites with natural cellulose fibers in the automotive industry of the European Union. This trend is entirely logical, owing to a preference for renewable resources. The experimental program itself follows pronounced hypotheses and focuses on a description of the mechanical properties of untreated and alkali-treated natural vegetable fibers, coconut and abaca fibers. These fibers have great potential for use in composite materials. The results and discussion sections contribute to an introduction of an individual methodology for mechanical property assessment of cellulose fibers, and allows for a clear definition of an optimal process of alkalization dependent on the content of hemicellulose and lignin in vegetable fibers. The aim of this research was to investigate the influence of alkali treatment on the surface microstructure and tensile properties of coir and abaca fibers. These fibers were immersed into a 5% solution of NaOH at laboratory temperature for a time interval of 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24 h, and 48 h, rinsed and dried. The fiber surface microstructures before and after the alkali treatment were evaluated by SEM (scanning electron microscopy). SEM analysis showed that the alkali treatment in the NaOH solution led to a gradual connective material removal from the fiber surface. The effect of the alkali is evident from the visible changes on the surface of the fibers.


Author(s):  
Marius C. Barbu ◽  
Roman Reh ◽  
Ayfer Dönmez Çavdar

It would seem that with appropriate treatment almost any agricultural residue may be used as a suitable raw material for the wood-based panels like particle- and fiberboard production. The literature on wood-ligno-cellulose plant composite boards highlights steady interest for the design of new structures and technologies towards products for special applications with higher physical-mechanical properties at relatively low prices. Experimental studies have revealed particular aspects related to the structural composition of ligno-cellulose materials, such as the ratio between the different composing elements, their compatibility, and the types and characteristics of the used resins. Various technologies have been developed for designing and processing composite materials by pressing, extrusion, airflow forming, dry, half-dry, and wet processes, including thermal, chemical, thermo-chemical, thermo-chemo-mechanical treatments, etc. Researchers have undertaken to determine the manufacturing parameters and the physical-mechanical properties of the composite boards and to compare them with the standard PB, MDF, HB, SB made from single-raw material (wood). A great emphasis is placed on the processability of the ligno-cellulose composite boards by classical methods, by modified manufacturing processes, on the types of tools and processing equipment, the automation of the manufacturing technologies, the specific labor conditions, etc. The combinations of wood and plant fibers are successful, since there is obvious compatibility between the macro- and microscopic structures, their chemical composition, and the relatively low manufacturing costs and high performances, as compared to synthetic fiber-based composite materials.


2013 ◽  
Vol 291-294 ◽  
pp. 778-781
Author(s):  
Yun Bin Zhang ◽  
Jun Peng ◽  
Jing Wen Wang

The influence of factors, including different raw material ratio, drying temperature, concentration of glycerol and degassing time, on properties of chitosan edible film was studied. The results showed that higher mechanical properties of films could be achieved when chitosan and glycerin concentration were 1.5% and 0.5% respectively, and dried temperature was 55°C. Addition of proper amount of plasticizer could improve the properties of film.


Teknomekanik ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 14-19
Author(s):  
M Saddikin ◽  
Hendri Nurdin ◽  
Primawati Primawati

The raw materials of the timber industry, especially furniture, are increasingly difficult to obtain in the quantity and quality needed. The development efforts carried out were utilizing Nipah coir waste as a raw material for making particle boards. Particle boards are panel boards made of wood particles or materials containing lignocellulose. Nipah plants contain 27.3% lignin and 36.5% cellulose which has the potential to be used as raw material for particleboard production. This study aims to reveal the physical and mechanical properties of particleboards made from Nipah fruit fibre with adhesive using tapioca flour. The making of particle board is done with a ratio of 90%: 10%, 80%: 20%, 70%: 30%, 60%: 40%, by giving a pressure of 100 kg / cm2. Particle testing is carried out according to the JIS A 5908 standard (2003). From this study, the optimum results were obtained in variations of 60%:40%. The particle physical properties which have an average density value of 1.15 gr / cm3 and an average moisture content of 5.8%. While the mechanical properties obtained by the value of Modulus of Elasticity an average of 21,188.93 kg / cm2. This shows the particle board variations of 60%: 40% produced to meet the JIS A 5908 (2003) standard. Based on the analysis of the quality variations 60%: 40% of particle boards can be recommended as raw materials for interior furniture.


2020 ◽  
Author(s):  
Vera Radnaeva ◽  
Dmitry Shalbuev ◽  
Nikolay Sovetkin ◽  
Khurelsukh Gaanbaatar ◽  
Solongo Khosbayar ◽  
...  

Horse skin is used for processing various types of skin. However, paws of horse skin are not used as fur raw material. Usually they are burned or sent to landfills and may cause infectious diseases. It is possible to minimize negative impact on the environment by converting this waste into fur raw material. In cold regions of Russia high fur boots made of cattle and deer paws are very popular. The aim of the research is to study the possibility of using paws of horse skin as raw material for fur industry. Processing of horse paws based on well-known leather and fur processing technologies lead to semi-finished product characterized by increased stiffness and uneven properties on different skin parts. Such semi-finished product was not suitable for high fur boots manufacture. The aim of the research is to work out a new technology and study chemical and physico-mechanical properties. In the work various treatment options for horse paws and their properties are investigated: moisture content, amount of minerals and chromium oxide, pH of the aqueous extract, tensile strength, elongation at a voltage of 10 MPa, and stiffness are determined. The possibility of transferring horse paws from municipal solid waste into fur raw material is shown.


2018 ◽  
Vol 192 ◽  
pp. 03005
Author(s):  
Naruebodee Srisang ◽  
Siriwan Srisang ◽  
Thatchapol Chungcharoen

Betel nut kernel is an important raw material in the leather and dye industries. The quality control after harvest is necessary, especially, the excess moisture content may cause the spoilage. Therefore, this research aims to study the betel nut fruit drying using infrared ray combined with the rotated trays. The betel nuts fruits were placed in rotated trays. These trays were installed within drying chamber which had the infrared rod in 2 positions namely the center and wall of drying chamber. The drying temperature used at 80, 100 and 120°C. The revolution speed of tray was set at 2, 4 and 6 rpm. The dried betel nut fruits were cut into 2 pieces at the blade speed of 25, 30 and 35 rpm. The experimental results showed the installation of infrared rods at the center could decrease the moisture content faster than at the wall. The betel nut fruit should use the drying temperature of 120°C for 10 h and the revolution speed of 2 rpm. The blade speed of 30 rpm gave the most cutting performance about 76%. The colour of dried betel nut kernel (L*, a* and b*) did not significantly difference with the commercial betel nut.


Author(s):  
Marius C. Barbu ◽  
Roman Reh ◽  
Ayfer Dönmez Çavdar

It would seem that with appropriate treatment almost any agricultural residue may be used as a suitable raw material for the wood-based panels like particle- and fiberboard production. The literature on wood-ligno-cellulose plant composite boards highlights steady interest for the design of new structures and technologies towards products for special applications with higher physical-mechanical properties at relatively low prices. Experimental studies have revealed particular aspects related to the structural composition of ligno-cellulose materials, such as the ratio between the different composing elements, their compatibility, and the types and characteristics of the used resins. Various technologies have been developed for designing and processing composite materials by pressing, extrusion, airflow forming, dry, half-dry, and wet processes, including thermal, chemical, thermo-chemical, thermo-chemo-mechanical treatments, etc. Researchers have undertaken to determine the manufacturing parameters and the physical-mechanical properties of the composite boards and to compare them with the standard PB, MDF, HB, SB made from single-raw material (wood). A great emphasis is placed on the processability of the ligno-cellulose composite boards by classical methods, by modified manufacturing processes, on the types of tools and processing equipment, the automation of the manufacturing technologies, the specific labor conditions, etc. The combinations of wood and plant fibers are successful, since there is obvious compatibility between the macro- and microscopic structures, their chemical composition, and the relatively low manufacturing costs and high performances, as compared to synthetic fiber-based composite materials.


2017 ◽  
Vol 38 (1) ◽  
pp. 185
Author(s):  
Daniel Emanuel Cabral de Oliveira ◽  
Osvaldo Resende ◽  
Ivano Alessandro Devilla

This paper aimed to verify the influence of moisture content and drying temperature on the values of maximum compression strength for fixed strains (1; 2; 3; 4; 5; 6; and 7 mm), rupture force, and proportional deformity modulus on the baru fruit (Dipteryx alata Vogel) under compression in a natural resting position. Baru fruits with a moisture content ranging from 0.333 to 0.053 (decimal dry basis - db) were used. The fruits were uniaxially compressed between two parallel plates, in the natural resting position, and the nuts were dried at temperatures of 60, 80, and 100 °C. The reduction in the moisture content during drying was monitored using a gravimetric method (weight loss) to determine the initial moisture content of the product and the final moisture content. Based on our results, the compression force needed to deform the baru fruit decreased with increasing moisture content, regardless of the drying temperature. The proportional deformity modulus increased with the reduction of moisture content for all the studied temperatures. The reduced moisture content increased the force required to rupture the baru fruit, regardless of the drying temperature. The rupture forces of temperatures of 60 to 100 °C may be represented by one model.


Author(s):  
Д.В. ЕВТЕХОВ ◽  
Р.В. БЕЗНОСЮК ◽  
С.Т. КОДИРОВ ◽  
Г.К. РЕМБАЛОВИЧ ◽  
Н.С. ЖБАНОВ

Проблема и цель. В процессе уборки картофеля меняются почвенно-климатические условия, урожайность, свойства убираемых клубней и поэтому уборочный комплекс должен гибко реагировать на эти изменения. Это предполагает не только своевременную настройку рабочих органов, но и более широкие возможности современных картофелеуборочных машин. Цель – совершенствование картофелеуборочных машин на основе применения полимерных и композиционных материалов. Методология. Появление в бункере комбайна клубней с повреждениями, ушибами (потемнение мякоти) свидетельствует о значительных динамических нагрузках рабочих органов. Предлагаемый сепарирующий элеватор имеет гибкие композиционные прутки, которые взаимодействуют с обрезиненными роликами-интенсификаторами и при движении образуют волнообразную, постоянно меняющуюся поверхность. При поступлении картофельного вороха гибкие композиционные прутки прогибаются, причем чем больше масса поступающего картофельного вороха, тем больше величина прогиба прутков. При изменении почвенно-климатических условий значительная нагрузка приходится на органы выносной сепарации, поэтому увеличение производительности и снижение повреждений клубней является важной задачей. Для повышения эффективности работы продольной прямоточной пальчиковой горки был предложен многокулачковый встряхиватель с регулируемой частотой и амплитудой воздействия. Благодаря колебательным воздействиям полотна пальчиковой горки картофель приобретает дополнительную подвижность, что позволяет более полно использовать различия физико-механических свойств клубней и примесей. Результаты. Применение сепарирующего элеватора с композиционными прутками увеличило сепарирующую способность картофелекопателя на суглинке нормальной влажности (22 %) и снизило повреждения клубней на 2,6 %. Сравнительные показатели качества работы комбайна Grimme DR-1500, оборудованного модернизированной горкой с многокулачковым всряхивателем и серийного комбайна Grimme DR-1500 соответственно составили: полнота уборки – 97,3 % и 95,8 %; полнота выделения примесей – 94,1% и 86,8 %; процент повреждений клубней –2,47 % и 3,15 %. Заключение. Увеличение интенсивности сепарации на рабочих органах из композиционных и полимерных материалов позволяет увеличить производительность картофелеуборочных машин. Problem and purpose. In the process of harvesting potatoes, the soil and climatic conditions change, the yield properties of the harvested tubers, and therefore the harvesting complex must respond fexibly to these changes. This presupposes not only the timely adjustment of the working bodies, but also the wider possibilities of modern potato harvesters. The goal is to improve potato harvesters based on the use of polymer and composite materials. Methodology. The appearance of tubers with injuries in the bunker of the combine with bruises (darkening of the pulp) indicates signifcant dynamic loads of the working organs. The proposed separating elevator has fexible composite rods, which interact with rubberized intensifer rollers and, when moving, form a wavy, constantly changing surface. When the potato heap arrives, the fexible composite rods bend, and the greater the mass of the heap, the greater the defection. With a change in soil and climatic conditions, a signifcant load falls on the external separation organs, therefore, increasing productivity and reducing damage to tubers is an important task. To increase the efciency of the longitudinal direct-fow hedgehog slide, a multi-cam shaker with an adjustable frequency and amplitude of action was proposed. Owing to the vibrational efects of the hedgehog slider, the potato acquires additional mobility, which allows more full use of the diferences in the physical and mechanical properties of tubers and impurities. Results. The use of a separating elevator with composite rods increased the separating capacity of a potato digger on loam of normal moisture content (22%) and reduced damage to tubers by 2.6%. Comparative performance indicators of the Grimme DR-1500 combine equipped with a modernized slide with a multi-cam shaker and the Grimme DR-1500 serial combine, respectively, were: completeness of cleaning –97.3% and 95.8%; completeness of separation of impurities – 94.1% and 86.8%; percentage of damage to tubers –2.47% and 3.15%. Conclusion. An increase in the intensity of separation on working bodies made of composite and polymer materials allows increasing the productivity of potato harvesters.


Sign in / Sign up

Export Citation Format

Share Document