scholarly journals STUDY OF PERFORMANCE INDICATORS OF POTATO HARVESTING MACHINES WITH MODERNIZED WORKING BODIES

Author(s):  
Д.В. ЕВТЕХОВ ◽  
Р.В. БЕЗНОСЮК ◽  
С.Т. КОДИРОВ ◽  
Г.К. РЕМБАЛОВИЧ ◽  
Н.С. ЖБАНОВ

Проблема и цель. В процессе уборки картофеля меняются почвенно-климатические условия, урожайность, свойства убираемых клубней и поэтому уборочный комплекс должен гибко реагировать на эти изменения. Это предполагает не только своевременную настройку рабочих органов, но и более широкие возможности современных картофелеуборочных машин. Цель – совершенствование картофелеуборочных машин на основе применения полимерных и композиционных материалов. Методология. Появление в бункере комбайна клубней с повреждениями, ушибами (потемнение мякоти) свидетельствует о значительных динамических нагрузках рабочих органов. Предлагаемый сепарирующий элеватор имеет гибкие композиционные прутки, которые взаимодействуют с обрезиненными роликами-интенсификаторами и при движении образуют волнообразную, постоянно меняющуюся поверхность. При поступлении картофельного вороха гибкие композиционные прутки прогибаются, причем чем больше масса поступающего картофельного вороха, тем больше величина прогиба прутков. При изменении почвенно-климатических условий значительная нагрузка приходится на органы выносной сепарации, поэтому увеличение производительности и снижение повреждений клубней является важной задачей. Для повышения эффективности работы продольной прямоточной пальчиковой горки был предложен многокулачковый встряхиватель с регулируемой частотой и амплитудой воздействия. Благодаря колебательным воздействиям полотна пальчиковой горки картофель приобретает дополнительную подвижность, что позволяет более полно использовать различия физико-механических свойств клубней и примесей. Результаты. Применение сепарирующего элеватора с композиционными прутками увеличило сепарирующую способность картофелекопателя на суглинке нормальной влажности (22 %) и снизило повреждения клубней на 2,6 %. Сравнительные показатели качества работы комбайна Grimme DR-1500, оборудованного модернизированной горкой с многокулачковым всряхивателем и серийного комбайна Grimme DR-1500 соответственно составили: полнота уборки – 97,3 % и 95,8 %; полнота выделения примесей – 94,1% и 86,8 %; процент повреждений клубней –2,47 % и 3,15 %. Заключение. Увеличение интенсивности сепарации на рабочих органах из композиционных и полимерных материалов позволяет увеличить производительность картофелеуборочных машин. Problem and purpose. In the process of harvesting potatoes, the soil and climatic conditions change, the yield properties of the harvested tubers, and therefore the harvesting complex must respond fexibly to these changes. This presupposes not only the timely adjustment of the working bodies, but also the wider possibilities of modern potato harvesters. The goal is to improve potato harvesters based on the use of polymer and composite materials. Methodology. The appearance of tubers with injuries in the bunker of the combine with bruises (darkening of the pulp) indicates signifcant dynamic loads of the working organs. The proposed separating elevator has fexible composite rods, which interact with rubberized intensifer rollers and, when moving, form a wavy, constantly changing surface. When the potato heap arrives, the fexible composite rods bend, and the greater the mass of the heap, the greater the defection. With a change in soil and climatic conditions, a signifcant load falls on the external separation organs, therefore, increasing productivity and reducing damage to tubers is an important task. To increase the efciency of the longitudinal direct-fow hedgehog slide, a multi-cam shaker with an adjustable frequency and amplitude of action was proposed. Owing to the vibrational efects of the hedgehog slider, the potato acquires additional mobility, which allows more full use of the diferences in the physical and mechanical properties of tubers and impurities. Results. The use of a separating elevator with composite rods increased the separating capacity of a potato digger on loam of normal moisture content (22%) and reduced damage to tubers by 2.6%. Comparative performance indicators of the Grimme DR-1500 combine equipped with a modernized slide with a multi-cam shaker and the Grimme DR-1500 serial combine, respectively, were: completeness of cleaning –97.3% and 95.8%; completeness of separation of impurities – 94.1% and 86.8%; percentage of damage to tubers –2.47% and 3.15%. Conclusion. An increase in the intensity of separation on working bodies made of composite and polymer materials allows increasing the productivity of potato harvesters.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Asim Shahzad

This paper presents the results of the experiments undertaken to evaluate various physical and mechanical properties of hemp fibres. The study of these properties is vital for comparison with similar properties of synthetic fibres and for assessing hemp fibres’ suitability for use as reinforcement in composite materials. The properties of hemp fibres were found to be good enough to be used as reinforcement in composite materials. However, the issues of relatively high moisture content of fibres, variability in fibre properties, and relatively poor fibre/matrix interfacial strength were identified as factors that can reduce the efficiency with which these fibres can be utilised.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1369
Author(s):  
Sanjeev Kumar ◽  
Lalta Prasad ◽  
Vinay Kumar Patel ◽  
Virendra Kumar ◽  
Anil Kumar ◽  
...  

In recent times, demand for light weight and high strength materials fabricated from natural fibres has increased tremendously. The use of natural fibres has rapidly increased due to their high availability, low density, and renewable capability over synthetic fibre. Natural leaf fibres are easy to extract from the plant (retting process is easy), which offers high stiffness, less energy consumption, less health risk, environment friendly, and better insulation property than the synthetic fibre-based composite. Natural leaf fibre composites have low machining wear with low cost and excellent performance in engineering applications, and hence established as superior reinforcing materials compared to other plant fibres. In this review, the physical and mechanical properties of different natural leaf fibre-based composites are addressed. The influences of fibre loading and fibre length on mechanical properties are discussed for different matrices-based composite materials. The surface modifications of natural fibre also play a crucial role in improving physical and mechanical properties regarding composite materials due to improved fibre/matrix adhesion. Additionally, the present review also deals with the effect of silane-treated leaf fibre-reinforced thermoset composite, which play an important role in enhancing the mechanical and physical properties of the composites.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4284
Author(s):  
Lvtao Zhu ◽  
Mahfuz Bin Rahman ◽  
Zhenxing Wang

Three-dimensional integrated woven spacer sandwich composites have been widely used as industrial textiles for many applications due to their superior physical and mechanical properties. In this research, 3D integrated woven spacer sandwich composites of five different specifications were produced, and the mechanical properties and performance were investigated under different load conditions. XR-CT (X-ray computed tomography) images were employed to visualize the microstructural details and analyze the fracture morphologies of fractured specimens under different load conditions. In addition, the effects of warp and weft direction, face sheet thickness, and core pile height on the mechanical properties and performance of the composite materials were analyzed. This investigation can provide significant guidance to help determine the structure of composite materials and design new products according to the required mechanical properties.


2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


2018 ◽  
Vol 41 (1) ◽  
pp. 27-33
Author(s):  
N.O. Sharkova ◽  
E.К. Zhukotskyi ◽  
Т.Y. Тurchyna ◽  
H.V. Dekusha ◽  
A.A. Makarenko

The use of discrete-pulse energy input (DPEI) mechanisms in various industries has become a reliable tool for the intensification of heat and mass transfer processes in various technological lines and reduction of specific energy consumption. The study of structural transformations in heterogeneous systems under influence of mechanisms of DPEI opens up new possibilities for their use as evidenced by this article. Under certain conditions it is possible to prepare a mushroom suspension with specified characteristics for drying and enhance medicinal properties of the obtained powder product while retaining all valuable components of feedstock. The article presents the results of research of DPEI-processing effect of the shiitake mushroom fruit body on the on physical and mechanical properties and structural characteristics of the mushroom suspension. The influence of hydro module, temperature of the suspension and the layout of the working bodies of the rotor-pulse apparatus (RPA) on its dynamic viscosity was studied and the possibility of reducing viscosity by 2-3 times is shown.  An analysis of mushroom suspension microstructure has showed that with a certain layout of the working bodies of the RPA it is possible to control the degree of dispersion of particles and change the spatial structure of the aggregates in the volume of the dispersion medium. It is determined that self-organization of spatial aggregates from individual hyphae in such suspensions occurs over time. Moreover, the smaller the size of hyphae (≤ 25 microns after the RPA of the first version of the arrangement: rotor-stator-rotor) are, the larger the size of the spatial aggregates are formed. After the RPA with the second layout option, the fragments of hyphae had sizes ≥ 50 μm, but the dimensions of the spatial aggregates were three times smaller. It is found that after three times passing of the mushroom suspension through the RPA and its subsequent treatment in the cavitation device, the dynamic viscosity of the suspension is reduced by 20%. Confirmation of the the effectiveness of the DPEI-mechanisms in obtaining mushroom suspension is that due to the hydromechanical destruction of the polysaccharide structures of the chitin-glucan complex of the shiitake mushroom the content of the bioavailable complex of water-soluble oncostatic and immunoregulatory polysaccharides in the powder obtained by drying the mushroom suspension in an experimental spray dryer increased 6 times. References 13, figures 6.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Dendi Prayoga ◽  
. Dirhamsyah ◽  
. Nurhaida

This research aimed to examine the physical and mechanical properties of particle boards based on the composition of raw materials and adhesive content and know the treatment of the composition of raw materials and the best adhesive content and meet the standard JIS A 5908-2003. The research was conducted at Wood Workshop Laboratory, Wood Processing Laboratory Faculty of Forestry,Tanjungpura University and Laboratory of PT. Duta Pertiwi Nusantara Pontianak. The adhesive used is Urea Formaldehyde with 52% Solid Content. Comparison of the composition of rice husks and sengon varies namely rice husk 50%: sengon 50%, rice husk 60%: sengon 40% and rice husk 70%: sengon 30%  and variations in the levels of UF adhesives, namely 14% and 16%, with target density 0,7 gr/cm3. The particleboard was 30 cm x 30 cm x 1 cm Pressing at temperature 140oC for 8 minutes, with  pressure of 25 kg/cm2. The research results of the study of density and moisture content meet the standards JIS A 5908-2003. The best particle values of rice husk and sengon  with composition a ratio of  rice husk 50%: sengon 50% , 16% adhesive content  16%, with density value of  0,7072 gr/cm3, moisture content 9,1949 %, thick development 12,3210 %, water absorption 68,8270 %, MOE 12110,7273 kg/cm2, MOR 161,0025 kg/cm2, firmness sticky 1,9320 kg/cm2, screw holding strength 62,3124 kg.Keywords : adhesive, composition, particle board, rice husk, sengon


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
. Erma ◽  
Fadiilah H Usman ◽  
. Muflihati

Physical and mechanical properties of wood is one of the basic properties that need to be known in the selection of wood, because the physical and mechanical properties of wood are not the same height on the stem. Increased wood demand gives the opportunity to use wood that is not yet known for its marketing, one of which is Salam wood (Syzygium polianthum (Wight) Walp). The purpose of this research was to determine the physical and mechanical properties of Salam wood based on the height of the stem so that Salam wood can be optimally utilized by testing based on Classification SNI – 5 PKKI 1961. Methods of making test and test examples based on British Standard Methods No. 373-1957. The results showed that Salam wood has physical properties with an average  brown colour, the moisture content 3,13 % , density  0,58 kg/cm2 , Depreciation 2,59 %. Salam has mechanical properties with an average height position stem from base to tip with Modulus of Elastiscity (MOE)  97.701,54 , Modulus of Rupture (MOR) 659,18  and  Modulus Crushing  Streang 342,86 . Salam can be classified into strong class III and based on its properties and mechanics, it is suitable for use as a lightweight construction and furniture.Keywords: Density, depreciation, MCS, MOE, moisture content, MOR


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


Sign in / Sign up

Export Citation Format

Share Document