State-of-the-Art Method in Prosthetic Hand Design: A Review

Author(s):  
T. Triwiyanto ◽  
Triana Rahmawati ◽  
I. Putu Alit Pawana ◽  
L. Lamidi ◽  
Torib Hamzah ◽  
...  

Human limb amputation can be caused due to congenital disabilities, accidents, and certain diseases. Amputation caused by occupational accidents is a frequent occurrence in developing countries. Meanwhile, amputation caused by certain diseases such as diabetes Miletus is also the leading cause. The need for prosthetic hand is increasing along with the increase in those two factors. Several researchers have developed prosthetic hands with advantages and disadvantages. Research on prosthetic hands, which are useful, low power, and low cost, is still a major issue. Therefore, the purpose of this paper is to provide a review of the various designs of prosthetic hands, specifically on the sensor, control, and actuator systems. This paper collected several references from proceedings and journals related to the design of the prosthetic hand. The results show that the EMG signal is widely used by some researchers in controlling prosthetic hands compared to other sensors, following the force-sensitive resistor (FSR) sensor. To control prosthetic hands, some researchers used a threshold system with a value of 20% of the maximum voluntary contraction (MVC), and several other researchers used a pattern recognition model based on the EMG signal feature. Moreover, In the mechanical part, the open-source prosthetic hand model is more widely used than the fabricate prosthetic hand. This is due to the cost required in the prosthetic hand design is cheaper than a fabricated one. The results of this review are expected to provide a recommendation to researchers in the development of low cost, low power, and practical prosthetic hands.

Sensor Review ◽  
2016 ◽  
Vol 36 (2) ◽  
pp. 158-168 ◽  
Author(s):  
Drew van der Riet ◽  
Riaan Stopforth ◽  
Glen Bright ◽  
Olaf Diegel

Purpose This paper aims to explore the electronic design of the Touch Hand: a low-cost electrically powered prosthetic hand. The hand is equipped with an array of sensors allowing for position control and haptic sensation. Pressure sensors are used on the fingertips to detect grip force. A temperature sensor placed in the fingertip is used to measure the contact temperature of objects. Investigations are made into the use of cantilever vibration sensors to detect surface texture and object slippage. The hand is capable of performing a lateral grip of 3.7 N, a power grip of 19.5 N and to passively hold a weight of up to 8 kg with a hook grip. The hand is also tested on an amputee and used to perform basic tasks. The amputee took 30 min to learn how to operate the hands basic gripping functions. Design/methodology/approach Problems of previous prosthetic hands were investigated, followed by ways to improve or have similar capabilities, yet keeping in mind to reduce the price. The hand was then designed, simulated, developed and then tested. The hand was then displayed to public and tested with an amputee. Findings The Touch Hand’s capabilities with the usage of the low-cost materials, components and sensory system was obtained in the tests that were conducted. The results are shown in this paper to identify the appropriateness of the sensors for a usage while the costs are reduced. Furthermore, models were developed from the results obtained to take into account factors such as the non-slip material. Research limitations/implications The research was restricted to a US$1,000 budget to allow the availability of a low-cost prosthetic hand. Practical implications The Touch Hand had to have the ability to supply the amputee with haptic feedback while allowing the basic grasping of objects. The commercial value is the availability of an affordable prosthetic hand that can be used by amputees in Africa and other Lower-Income countries, yet allowing a more advanced control system compared to the pure mechanical systems currently available. Social implications The Touch Hand has the ability to give amputees affected in war situations the ability to grasp objects in a more affordable manner compared to the current available options. Feedback from amputees about the current features of the Touch Hand was very positive and it proves to be a way to improve society in Lower-Income countries in the near future. A sponsorship program is being developed to assist amputees with the costs of the Touch Hand. Originality/value The contributions of this research is a low-cost prototype system than can be commercialized to allow amputees in the Lower-Income countries to have the ability of a prosthetic hand. A sensory system in the hand is also explained which other low-cost prosthetic hands do not have, which includes temperature, force and vibration. Models of the sensors used that are developed and calibrated to the design of the hand are also described.


2019 ◽  
Vol 5 (1) ◽  
pp. 207-210
Author(s):  
Tolgay Kara ◽  
Ahmad Soliman Masri

AbstractMillions of people around the world have lost their upper limbs mainly due to accidents and wars. Recently in the Middle East, the demand for prosthetic limbs has increased dramatically due to ongoing wars in the region. Commercially available prosthetic limbs are expensive while the most economical method available for controlling prosthetic limbs is the Electromyography (EMG). Researchers on EMG-controlled prosthetic limbs are facing several challenges, which include efficiency problems in terms of functionality especially in prosthetic hands. A major issue that needs to be solved is the fact that currently available low-cost EMG-controlled prosthetic hands cannot enable the user to grasp various types of objects in various shapes, and cannot provide the efficient use of the object by deciding the necessary hand gesture. In this paper, a computer vision-based mechanism is proposed with the purpose of detecting and recognizing objects and applying optimal hand gesture through visual feedback. The objects are classified into groups and the optimal hand gesture to grasp and use the targeted object that is most efficient for the user is implemented. A simulation model of the human hand kinematics is developed for simulation tests to reveal the efficacy of the proposed method. 80 different types of objects are detected, recognized, and classified for simulation tests, which can be realized by using two electrodes supplying the input to perform the action. Simulation results reveal the performance of proposed EMG-controlled prosthetic hand in maintaining optimal hand gestures in computer environment. Results are promising to help disabled people handle and use objects more efficiently without higher costs.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3531 ◽  
Author(s):  
Lorenzo Manoni ◽  
Claudio Turchetti ◽  
Laura Falaschetti ◽  
Paolo Crippa

Wearable devices offer a convenient means to monitor biosignals in real time at relatively low cost, and provide continuous monitoring without causing any discomfort. Among signals that contain critical information about human body status, electromyography (EMG) signal is particular useful in monitoring muscle functionality and activity during sport, fitness, or daily life. In particular surface electromyography (sEMG) has proven to be a suitable technique in several health monitoring applications, thanks to its non-invasiveness and ease to use. However, recording EMG signals from multiple channels yields a large amount of data that increases the power consumption of wireless transmission thus reducing the sensor lifetime. Compressed sensing (CS) is a promising data acquisition solution that takes advantage of the signal sparseness in a particular basis to significantly reduce the number of samples needed to reconstruct the signal. As a large variety of algorithms have been developed in recent years with this technique, it is of paramount importance to assess their performance in order to meet the stringent energy constraints imposed in the design of low-power wireless body area networks (WBANs) for sEMG monitoring. The aim of this paper is to present a comprehensive comparative study of computational methods for CS reconstruction of EMG signals, giving some useful guidelines in the design of efficient low-power WBANs. For this purpose, four of the most common reconstruction algorithms used in practical applications have been deeply analyzed and compared both in terms of accuracy and speed, and the sparseness of the signal has been estimated in three different bases. A wide range of experiments are performed on real-world EMG biosignals coming from two different datasets, giving rise to two different independent case studies.


2020 ◽  
Vol 44 (3) ◽  
pp. 180-184
Author(s):  
Arezoo Eshraghi ◽  
Jaeeun Yoo ◽  
James Klein ◽  
Ian Mckenzie ◽  
Gabrielle Sebaldt ◽  
...  

Background and Aim: For infants and small toddlers with congenital upper limb deficiencies, terminal devices mainly provide either cosmesis or functionality. We report a clinical note about fitting a child with a low-cost passive hand targeting both functionality and cosmesis. Technique: An elastomeric, alloy-wire-reinforced hand was fabricated using additive manufacturing to allow independent positioning of the digits. A clinical pilot in-home evaluation was conducted on a child with upper limb loss. Discussion: The fabricated hand met the functional requirements but required a cover for cosmesis due to a poor surface finish associated with the fabrication technique. The participant child was comfortable using the prosthesis for various tasks. The parents were satisfied with the hand’s function and cosmesis when covered with a cosmetic glove. This work demonstrated a new design and process that may in the future improve the utilization of prosthetic hands to promote early prosthesis use and a child’s development. Clinical relevance Early prosthesis use is important for infants and toddlers. Additive manufacturing may enable the fabrication of custom passive prosthetic hands that provide both cosmesis and functionality.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Fathia H. A. Salem ◽  
Khaled S. Mohamed ◽  
Sundes B. K. Mohamed ◽  
Amal A. El Gehani

The state of the art in the technology of prosthetic hands is moving rapidly forward. However, there are only two types of prosthetic hands available in Libya: the Passive Hand and the Mechanical Hand. It is very important, therefore, to develop the prosthesis existing in Libya so that the use of the prosthesis is as practical as possible. Considering the case of amputation below the elbow, with two movements: opening and closing the hand, this work discusses two stages: developing the operation of the body-powered prosthetic hand by controlling it via the surface electromyography signal (sEMG) through dsPIC30f4013 processor and a servo motor and a software based on fuzzy logic concept to detect and process the EMG signal of the patient as well as using it to train the patient how to control the movements without having to fit the prosthetic arm. The proposed system has been practically implemented, tested, and gave satisfied results, especially that the used processor provides fast processing with high performance compared to other types of microcontrollers.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Alicja Rutkowska-Kucharska ◽  
Agnieszka Szpala

SummaryStudy aim: the aim of our study was to evaluate electromyography (EMG) activity in exercises where the load to the muscles is determined by the external torque. In a part of the exercises, we changed the value of the external force, while in the other we modified the length of the lever arm at which the force was applied.Material and methods: the study was carried out on a group of 12 subjects (21 ± 2 years, 61 ± 4.8 mass, 172 ± 5 cm height). Electromyographic activity of the rectus abdominis (RA) muscle was evaluated by recording the EMG signal. The length of the lever arm of the external force was changed by using four different positions of the upper limbs, whereas the magnitude of the external force was changed through adding the weights of 0.5, 1.0, and 1.5 kg. The data recorded were normalized with respect to EMG activity measured under maximum voluntary contraction (MVC) conditions.Results: it was found that the change of the lever arm at which the force was applied (any change in the position of the upper limbs) causes a change in EMG activity in each part of the RA muscle from ca. 50% to ca. 100% MVC (p < 0.001). Further, the change in the external load changes statistically significantly the EMG activity only in the left upper part of the RA muscle (p < 0.05).Conclusions: activity in the RA muscle that increased for longer lever arms of the external force, offers opportunities for changing the load used during the exercise in a manner that is safe for the vertebral column.


2014 ◽  
Vol 945-949 ◽  
pp. 2353-2357
Author(s):  
Nan Chen ◽  
Chang Tao Wang ◽  
Feng Long Kan ◽  
Lan Guang Zhao

ZigBee is the new standard that has been developed for low cost, low data rate and low power consumption wireless network,The routing algorithm is the key of the research and development work. This paper introduces the ZigBee protocol model of specification, And focuses on the ZigBee protocol network layer routing algorithm, Analyzes the advantages and disadvantages of tree routing and AODVjr routing algorithm.


2009 ◽  
Vol 34 (6) ◽  
pp. 1008-1016 ◽  
Author(s):  
David G. Behm ◽  
Dario Cappa ◽  
Geoffrey A. Power

Time constraints are cited as a barrier to regular exercise. If particular exercises can achieve multiple training functions, the number of exercises and the time needed to achieve a training goal may be decreased. It was the objective of this study to compare the extent of trunk muscle electromyographic (EMG) activity during running and callisthenic activities. EMG activity of the external obliques, lower abdominals (LA), upper lumbar erector spinae (ULES), and lumbosacral erector spinae (LSES) was monitored while triathletes and active nonrunners ran on a treadmill for 30 min at 60% and 80% of their maximum heart rate (HR) reserve, as well as during 30 repetitions of a partial curl-up and 3 min of a modified Biering-Sørensen back extension exercise. The mean root mean square (RMS) amplitude of the EMG signal was monitored over 10-s periods with measures normalized to a maximum voluntary contraction rotating curl-up (external obliques), hollowing exercise (LA), or back extension (ULES and LSES). A main effect for group was that triathletes had greater overall activation of the external obliques (p < 0.05), LA (p = 0.01), and LSES (p < 0.05) than did nonrunners. Main effects for exercise type showed that the external obliques had less EMG activity during 60% and 80% runs, respectively, than with the curl-ups (p = 0.001). The back extension exercise provided less ULES (p = 0.009) and LSES (p = 0.0001) EMG activity than the 60% and 80% runs, respectively. In conclusion, triathletes had greater trunk activation than nonrunners did while running, which could have contributed to their better performance. Back-stabilizing muscles can be activated more effectively with running than with a prolonged back extension activity. Running can be considered as an efficient, multifunctional exercise combining cardiovascular and trunk endurance benefits.


Sign in / Sign up

Export Citation Format

Share Document