Effect of Ultrasonic Treatment on Morphology and Mechanical Properties of Bioplastic from Cassava Starch with Nanoclay Reinforcement

Author(s):  
Nanang Eko Wahyuningtiyas ◽  
Heru Suryanto

The research is to investigate influence of sonication treatment on the morphologi and mechanical properties of bioplastic filler nanoclay with different nanoclay concentration. The bioplastic was prepared using blending method among bioplastic, glycerol, and nanoclay with assistance of sonication treatment of 30 mins. Structural characterization of bioplastic was examined using scanning electron microscopy (SEM), mechanical properties using durumeter Shore A, tensile strength and the physical properties using density. SEM evidence on a bioplastic basis. Hardness of bioplastic with addition of nanoclay 5.0% (b/b) and sonication treatment produce bioplastic with maximum hardness properties increased to 76.24 Shore A, tensile strength of 13.5 and Young’s modulus of 47, as well as the added density of 1.238 g/cm3. Nanoclay 7.5% (b/b) upwards will experience decreased hardness and experience agglomerate and debonding.

2013 ◽  
Vol 748 ◽  
pp. 150-154 ◽  
Author(s):  
Nurulsaidatulsyida Sulong ◽  
Anika Zafiah M. Rus

The effect of bio-polymer as compounding material in mechanical properties of HDPE is described in this study. 10% of bio-polymer was added to the HDPE and then mixed by using Brabender Plastograph machine using mixer and roller screw and then test specimens were prepared by injection moulding. The origin bio-polymer (VOP), HDPE and the compounding bio-polymer/ HDPE (CDM) were compared by using tensile test and the microstructure was investigated through scanning electron microscopy (SEM) for the fractured surface of the samples. The tensile strength of CDM was found to increase that is 17.47 MPa compared to pure VOP that only 5.69 MPa while pure HDPE has the highest tensile strength that is 20.98 MPa. By adding 10% bio-polymer to the HDPE was increased up the strength at about 207.16% while pure HDPE produced 268.91% increment with VOP as the precursor. SEM of the VOP produced brittle fracture surface while CDM have brittle and ductile surface and HDPE has totally ductile surface with highest plastic deformation properties of all.


Author(s):  
Saeed Ahmadifard ◽  
Shahab Kazemi ◽  
Akbar Heidarpour

In this study, the production and characterization of A5083–Al2O3–TiO2 hybrid surface nanocomposite by friction stir processing have been investigated. The effect of different ratios of nanosized Al2O3 and TiO2 particles on microstructural and mechanical properties was investigated. A threaded cylindrical hardened steel tool was used with the rotation speed of 500 r/min and travel speed of 56 mm/min and a tilt angle of 3°. Microhardness of base metal and treated surfaces as well as tensile strength was evaluated. The samples were characterized by means of optical and scanning electron microscopy. The results showed that the maximum tensile strength and hardness value were achieved for a mixture of Al2O3 and TiO2 in the ratio of 25–75, respectively. The microhardness and tensile strength were respectively increased by 50% and 182% while ductility was reduced by 60%.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2174
Author(s):  
Diana Gregor-Svetec ◽  
Mirjam Leskovšek ◽  
Blaž Leskovar ◽  
Urška Stanković Elesini ◽  
Urška Vrabič-Brodnjak

Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated cellulose (NFC). The influence of untreated and surface-modified NFC on morphological, mechanical, technological, infrared spectroscopic, and dynamic mechanical properties was evaluated for different groups of samples. As determined by the stereo and scanning electron microscopy, the unmodified and surface-modified NFCs with lignin and polymerised lignin were present in the form of plate-shaped agglomerates. The addition of NFC slightly reduced the filaments’ tensile strength, stretchability, and ability to absorb energy, while in contrast, the initial modulus slightly improved. By adding NFC to the PLA matrix, the bending storage modulus (E’) decreased slightly at lower temperatures, especially in the PLA samples with 3 wt% and 5 wt% NFC. When NFC was modified with lignin and polymerised lignin, an increase in E’ was noticed, especially in the glassy state.


2018 ◽  
Vol 186 ◽  
pp. 02001
Author(s):  
Teng-wei Zhu ◽  
Cheng-liang Miao ◽  
Zheng Cheng ◽  
Zhipeng Wang ◽  
Yang Cui ◽  
...  

The influence of the mechanical properties of X70 pipeline steel under different annealing temperature was studied. The corresponding microstructure was investigated by the Field Emission Scanning Electron Microscopy. The results showed that the yield strength and the tensile strength both experienced from rise to decline with the increase of annealing temperature. The grain sizes were coarse and a large amount of cementite precipitated due to preserving temperature above 550 °, which induced matrix fragmentation and deteriorate the -10 ° DWTT Toughness. There were little changes on the microstructure and mechanical properties when the annealing temperature was under 500 °.


Author(s):  
Teresa D. Golden ◽  
Jeerapan Tientong ◽  
Adel M.A. Mohamed

Electrodeposition of only molybdenum onto substrates is difficult, therefore molybdenum is typically deposited with iron-based alloys such as nickel. The deposition of such alloys is known as an induced codeposition mechanism. The electrodeposition of nickel-molybdenum alloys using alkaline plating solutions is covered in this chapter. The mechanism for deposition of nickel-molybdenum is reviewed, as well as the influence of the plating parameters on the coatings. Characterization of the coatings by scanning electron microscopy and x-ray diffraction is discussed and how deposition parameters affect morphology, composition, and crystallite size. Nickel-molybdenum alloys offer enhanced corrosion protection and mechanical properties as coatings onto various substrates. A survey of the resulting hardness and Young's modulus is presented for several research studies. Corrosion parameters for several studies are also compared and show the percentage of molybdenum in the coatings affects these values.


2012 ◽  
Vol 729 ◽  
pp. 246-251 ◽  
Author(s):  
Sándor Kling ◽  
Tibor Czigány

The geometry and mechanical properties of solid and hollow carbon fibres were investigated by light-and scanning electron microscopy, and by single fibre tensile tests. The hollowness factor of fibres was determined by their external and internal diameter. The tensile strength was determined by single fibre tensile break tests. It was shown that the bigger the diameter of the fibres the lower the mechanical properties is. It was found that the hollow carbon fibres are suitable for preparation of a self-repairing composite with the advantage over other solutions because of their geometrical and mechanical properties.


2016 ◽  
Vol 51 (14) ◽  
pp. 1971-1977 ◽  
Author(s):  
NH Noor Mohamed ◽  
Hitoshi Takagi ◽  
Antonio N Nakagaito

The mechanical properties of cellulose nanofiber-reinforced polyvinyl alcohol composite were studied. Neat polyvinyl alcohol films, cellulose nanofiber sheets, and their nanocomposites containing cellulose nanofiber weight ratios of 5, 15, 30, 40, 45, 50 and 80 wt% were fabricated. Heat treatment by hot pressing at 180℃ was conducted on the specimens to study its effect to the mechanical properties and the results were compared with the non heat-treated specimens. Morphology of the composites was studied by scanning electron microscopy and the mechanical properties were evaluated by means of tensile tests. The results showed that increase of cellulose nanofiber content from 5 wt% to 80 wt% has increased the tensile strength of the composites up to 180 MPa, with cellulose nanofiber content higher than 40 wt% yielding higher tensile strength. The heat-treated specimens exhibited higher tensile strength compared to those of untreated specimens.


2014 ◽  
Vol 1048 ◽  
pp. 36-40
Author(s):  
Wei Lai Chen ◽  
Lin Yan Wan ◽  
Hong Qin

Microstructures and mechanical properties of melt spinning spandex were studied in this article.Cross section and longitudinal surface were observed and analyzed by JSM-5610LV scanning electron microscopy. Q2000 DSC differential scanning calorimeter was used to test the glass transition temperature and melting temperature which indicated glass transition temperature is about 44°C and melting temperature is about 200°C. We employed JSM-5610LV scanning electron microscopy to observe adhesion of melt spinning spandex with nylon filament after different time and temperature processing. It concluded that after 150°C90s、160°C60s、160°C90s、170°C30s heat treatment, the adhesive of melt spinning spandex with nylon is good. At the same time,tensile strength and elastic properties of melt spinning spandex which was processed under different time and temperature were tested, tensile strength and elastic recovery of melt spinning spandex after160°C 90s heat treatment is the best.


2017 ◽  
Vol 264 ◽  
pp. 112-115
Author(s):  
Erfan Suryani Abdul Rashid ◽  
Wageeh Abdulhadi Yehye ◽  
Nurhidayatullaili Muhd Julkapli ◽  
Sharifah Bee O.A. Abdul Hamid

Nanocellulose (NCC) is incorporated into nitrile butadiene rubber (NBR) latex with the composition 0 to 5 phr using dipping method. Mechanical properties of NBR/NCC composites using tensile test was used to characterize their mechanical performance and the fracture surfaces post tensile test were studied. The tensile strength of NBR/NCC composites increase significantly with the addition of nanocellulose. This could be anticipated due to the presence of Van der Waals interaction between hydrophilic natures of nanocellulose with hydrophobic of NBR consequently limits the tearing propagation. The result was supported with the fracture surfaces morphology viewed under Fourier Emission Scanning Electron Microscopy (FESEM).


Author(s):  
Malte L. Flachmann ◽  
Michael Seitz ◽  
Wilfried V. Liebig ◽  
Kay A. Weidenmann

AbstractComposite peening offers the opportunity to introduce ceramic blasting particles into metallic base material. By embedding Al2O3 particles, mechanical properties of aluminum can be improved. However, those surface modifications might negatively impact corrosion resistance and thus shorten the lifetime of components. This study analyzes corrosion properties of peened aluminum in chloride solution via immersion, scanning electron microscopy and polarization. The data of observed microstructures indicate that peening accelerates corrosion and that intergranular corrosion is the main force of degradation in contrast with pitting corrosion of monolithic aluminum.


Sign in / Sign up

Export Citation Format

Share Document