Fracture Characterization of MoSi2 Based Composites

2004 ◽  
Vol 261-263 ◽  
pp. 1481-1486 ◽  
Author(s):  
Sang Ll Lee ◽  
J.O. Jin ◽  
J.S. Park ◽  
Jong K. Lee ◽  
Byeong Hyeon Min ◽  
...  

This study dealt with the characterization of MoSi2 based composites containing three types of additive materials such as SiC, NbSi2 and ZrO2 particles have been investigated, based on the detailed examination of their microstructures and fracture surfaces. The effects of reinforcing materials on the high temperature strength of MoSi2 based composites have been also examined. MoSi2 based composites were fabricated by the hot press process under the vacuum atmosphere. The volume fraction of reinforcing materials in the composite system was fixed as 20 %. The microstructures and the mechanical properties of MoSi2 based composites were investigated by means of SEM, EDS, XRD and three point bending test.

2006 ◽  
Vol 321-323 ◽  
pp. 913-916
Author(s):  
Sang Ll Lee ◽  
Yun Seok Shin ◽  
Jin Kyung Lee ◽  
Jong Baek Lee ◽  
Jun Young Park

The microstructure and the mechanical property of liquid phase sintered (LPS) SiC materials with oxide secondary phases have been investigated. The strength variation of LPS-SiC materials exposed at the elevated temperatures has been also examined. LPS-SiC materials were sintered at the different temperatures using two types of Al2O3/Y2O3 compositional ratio. The characterization of LPS-SiC materials was investigated by means of SEM with EDS, three point bending test and indentation test. The LPS-SiC material with a density of about 3.2 Mg/m3 represented a flexural strength of about 800 MPa and a fracture toughness of about 9.0 MPa⋅√m.


2018 ◽  
Vol 11 (4) ◽  
pp. 339-344 ◽  
Author(s):  
Yucheng Huang ◽  
Yanhua Guan ◽  
Linbing Wang ◽  
Jian Zhou ◽  
Zhi Ge ◽  
...  

2012 ◽  
Vol 476-478 ◽  
pp. 1568-1571
Author(s):  
Ting Yi Zhang ◽  
Guang He Zheng ◽  
Ping Wang ◽  
Kai Zhang ◽  
Huai Sen Cai

Through the three-point bending test on the specimens of steel fiber reinforced high strength concrete (SFHSC), the effects of influencing factors including water-cement ratio (W/C) and the fiber volume fraction (ρf) upon the critical value(JC) of J integral were studied. The results show that the variation tendencies of JC are different under different factors. JC meets the linear statistical relation with W/C, ρf, respectively.


2014 ◽  
Vol 580-583 ◽  
pp. 2213-2219 ◽  
Author(s):  
Lin Liao ◽  
Sergio Cavalaro ◽  
Albert de la Fuente ◽  
Antonio Aguado

Many researches have been conducted in past decades for promoting the application of steel fibre reinforced concrete (SFRC), either conventional or self-compacting. However, the differences of post-crack behaviour and the properties of these two types of concrete remains unclear. The objective of this paper is to analyse such differences in terms of flexural behaviour, fibre orientation and contribution as well as the fibre content. For that, an extensive experimental campaign was carried out. In total 3 mixes of self-compacting and 3 mixes with traditional concrete were produced with the nominal fibre contents of 30kg/m3, 45kg/m3 and 60kg/m3. In each series, specimens were produces and characterized by three point bending test (code EN 14651) and inductive test. The results illustrate how fibre orientation and distribution justify the differences in the mechanical behaviour of the materials and the scatter of the bending test results.


Holzforschung ◽  
2009 ◽  
Vol 63 (5) ◽  
Author(s):  
Jorge M.Q. Oliveira ◽  
Marcelo F.S.F. de Moura ◽  
José J.L. Morais

Abstract This work describes the application of end loaded split and single-leg bending tests to the mixed-mode fracture characterization of wood. Experimental tests and numerical validation analyses were performed. A new data reduction scheme based on the crack equivalent concept is proposed. The method overcomes the difficulties inherent to these tests, such as crack length monitoring during propagation and influence of clamping conditions. The single-leg bending test is simpler to execute and provided accurate results. The obtained mixed-mode fracture energy is associated with the pure mode values and the obtained trend point to a linear fracture criterion as a candidate to describe the fracture behavior of the Pinus pinaster Ait. wood.


2017 ◽  
Vol 891 ◽  
pp. 542-546 ◽  
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek ◽  
Alexander Čapka ◽  
Lukáš Maňas

Jute fabric is well-known reinforcing material in composite science, however, there is a necessity to treat these fabrics to reduce moisture uptake and improve properties. Nevertheless, every modification increases the cost and reduces the possible applications. Presented research deals with an investigation of possibility to use untreated jute in various fabric weight as a reinforcing material in sandwich structures facings. Untreated jute reinforcements and two types of cork cores were saturated in one step during vacuum infusion creating a lightweight sandwich composite. All samples were mechanically tested in three-point bending test. Experimental results showed the most appropriate material combination and produced sandwich structure are proposed for design applications.


Sign in / Sign up

Export Citation Format

Share Document