scholarly journals Characterization of mortar fracture based on three point bending test and XFEM

2018 ◽  
Vol 11 (4) ◽  
pp. 339-344 ◽  
Author(s):  
Yucheng Huang ◽  
Yanhua Guan ◽  
Linbing Wang ◽  
Jian Zhou ◽  
Zhi Ge ◽  
...  
2006 ◽  
Vol 321-323 ◽  
pp. 913-916
Author(s):  
Sang Ll Lee ◽  
Yun Seok Shin ◽  
Jin Kyung Lee ◽  
Jong Baek Lee ◽  
Jun Young Park

The microstructure and the mechanical property of liquid phase sintered (LPS) SiC materials with oxide secondary phases have been investigated. The strength variation of LPS-SiC materials exposed at the elevated temperatures has been also examined. LPS-SiC materials were sintered at the different temperatures using two types of Al2O3/Y2O3 compositional ratio. The characterization of LPS-SiC materials was investigated by means of SEM with EDS, three point bending test and indentation test. The LPS-SiC material with a density of about 3.2 Mg/m3 represented a flexural strength of about 800 MPa and a fracture toughness of about 9.0 MPa⋅√m.


2014 ◽  
Vol 580-583 ◽  
pp. 2213-2219 ◽  
Author(s):  
Lin Liao ◽  
Sergio Cavalaro ◽  
Albert de la Fuente ◽  
Antonio Aguado

Many researches have been conducted in past decades for promoting the application of steel fibre reinforced concrete (SFRC), either conventional or self-compacting. However, the differences of post-crack behaviour and the properties of these two types of concrete remains unclear. The objective of this paper is to analyse such differences in terms of flexural behaviour, fibre orientation and contribution as well as the fibre content. For that, an extensive experimental campaign was carried out. In total 3 mixes of self-compacting and 3 mixes with traditional concrete were produced with the nominal fibre contents of 30kg/m3, 45kg/m3 and 60kg/m3. In each series, specimens were produces and characterized by three point bending test (code EN 14651) and inductive test. The results illustrate how fibre orientation and distribution justify the differences in the mechanical behaviour of the materials and the scatter of the bending test results.


2017 ◽  
Vol 891 ◽  
pp. 542-546 ◽  
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek ◽  
Alexander Čapka ◽  
Lukáš Maňas

Jute fabric is well-known reinforcing material in composite science, however, there is a necessity to treat these fabrics to reduce moisture uptake and improve properties. Nevertheless, every modification increases the cost and reduces the possible applications. Presented research deals with an investigation of possibility to use untreated jute in various fabric weight as a reinforcing material in sandwich structures facings. Untreated jute reinforcements and two types of cork cores were saturated in one step during vacuum infusion creating a lightweight sandwich composite. All samples were mechanically tested in three-point bending test. Experimental results showed the most appropriate material combination and produced sandwich structure are proposed for design applications.


2004 ◽  
Vol 261-263 ◽  
pp. 1481-1486 ◽  
Author(s):  
Sang Ll Lee ◽  
J.O. Jin ◽  
J.S. Park ◽  
Jong K. Lee ◽  
Byeong Hyeon Min ◽  
...  

This study dealt with the characterization of MoSi2 based composites containing three types of additive materials such as SiC, NbSi2 and ZrO2 particles have been investigated, based on the detailed examination of their microstructures and fracture surfaces. The effects of reinforcing materials on the high temperature strength of MoSi2 based composites have been also examined. MoSi2 based composites were fabricated by the hot press process under the vacuum atmosphere. The volume fraction of reinforcing materials in the composite system was fixed as 20 %. The microstructures and the mechanical properties of MoSi2 based composites were investigated by means of SEM, EDS, XRD and three point bending test.


1995 ◽  
Vol 117 (1) ◽  
pp. 94-100 ◽  
Author(s):  
Robert Greif ◽  
Benjamin Hebert

This research combines theoretical and experimental approaches for dynamic material characterization of composite materials. The samples studied include continuous fiber graphite/epoxy beams with various symmetric lay-up configurations. Included are laminated beams with the following lay-ups: [08/908]s, [908/08]s, [(45/0/−45)5]s and [(0/45/0/−45)3/90/0/01/2]s. The resonant dwell technique is used to determine the material damping and the real part of the dynamic flexural modulus of double cantilever beam specimens in the first mode of vibration over the frequency range 25 Hz to 300 Hz. The dynamic properties are determined as a function of the frequency of oscillation at room temperature. In addition, the Metravib Viscoanalyzer, based on off-resonance tests, is also used to provide another source of experimental data for comparison. Although the Viscoanalyzer was originally intended for testing viscoelastic polymers, the present research establishes the limits of applicability for composite materials, with particular emphasis on the three point bending test. Comparisons and limitations of both techniques are critically discussed.


Author(s):  
Shiyou Xu ◽  
Vinod Challa ◽  
Yong Shi

This paper reports the characterization of piezoelectric response of the Lead Zirconate Titanate (PbZr52Ti48O3) PZT nanofibers by three-point bending test using dynamic mechanical analyzer (DMA). PZT nanofibers were fabricated by sol-gel electrospinning process. The diameters of the fiber obtained were from 50 to 150 nm. The fiber consists of nanocrystal grains with average grain size of 10 nm. Titanium strip was used as substrate to collect the nanofibers for the three-point bending test to demonstrate the piezoresponse. The output voltage from the nanofibers under 0.5% strain was 0.17±0.005V, which was recorded by Labview. These results have shown that PZT nanofibers have great potential for nano sensor and actuator applications.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012034
Author(s):  
N B G Nguyen ◽  
H G Lemu ◽  
O Gabrielsen ◽  
I El-Thalji

Abstract This paper summarizes a master’s thesis project which explored whether the characteristics of Acoustic Emission Testing (AET) signals can be used to detect yielding in steel samples undergoing a three-point bending test. A subset of existing data from a three-point bending test was exported and used as input. Data was processed by utilizing and developing tools to visualize and analyse the signal characteristics, primarily through a parameter-based approach. Signals were visualized, and parameters were optimized to identify and classify signal types. According to the obtained results, some limitations on classification were experienced due to the length of the hit data recorded. Though the work reported in this article lead to a reliable method for detecting yielding, the developed algorithms were not successful in identifying characteristics that could be used to detect yielding.


Sign in / Sign up

Export Citation Format

Share Document