Study on Fractal Characteristics and Performance of Ultrafine Slag Grains

2006 ◽  
Vol 302-303 ◽  
pp. 242-247
Author(s):  
Ming Tang ◽  
Xiao Li

Ultrafine slag, which is ground with the process of vertical mill, is tested with the laser granulometric distribution apparatus quickly. The characteristics of granulometric distribution of ultrafine slag are analyzed using fractal theory. The fractal dimension of different fineness powders is tested and counted. The result shows that ultrafine slag powders have self-similar characteristics. With the laser granulometric distribution apparatus, the fractal dimension of its powders might be tested and counted with the fractal theory and its characteristics might be fast evaluated. The inherent law between powders fineness and activity is studied, and the mathematical model is built with the results. The fractal characteristics of powders might be used to meticulously evaluate fineness of ultrafine powders and be used to describe complexity of powders. The test of activation indicates that the slag fineness appraised by fractal dimension has fine linear relevant characteristic with its 7 d, 28 d activity.

2018 ◽  
Vol 13 (1) ◽  
pp. 155892501801300
Author(s):  
Yunlong Shi ◽  
Liang Wang ◽  
Wenhuan Zhang ◽  
Xiaoming Qian

In this paper, thermal and wet comforts of silicone coated windbreaker shell jacket fabrics were studied. Both thermal insulation and evaporative resistance of fabric increased with an increase in coating area due to the barrier effect of the silicone coating layer. Moreover, the coated fabrics with self-similar structures showed different thermal insulation and evaporative resistance under the same total coating area. Fractal theory was used to explain this phenomenon. Optimal thermal-wet comfort properties were obtained when the fractal dimension (D=1.599) was close to the Golden Mean (1.618). When the fractal dimension of coating was lower than 1.599, fabric warmth retention was not high enough. In contrast, fabric evaporative resistance was beyond the value at which people would feel comfortable when the fractal dimension was greater than 1.599.


2018 ◽  
Vol 159 ◽  
pp. 01006
Author(s):  
Bagus Hario Setiadji ◽  
Supriyono ◽  
Djoko Purwanto

Several studies have shown that fractal theory can be used to analyze the morphology of aggregate materials in designing the gradation. However, the question arises whether a fractal dimension can actually represent a single aggregate gradation. This study, which is a part of a grand research to determine aggregate gradation based on known asphalt mixture specifications, is performed to clarify the aforementioned question. To do so, two steps of methodology were proposed in this study, that is, step 1 is to determine the fractal characteristics using 3 aggregate gradations (i.e. gradations near upper and lower bounds, and middle gradation); and step 2 is to back-calculate aggregate gradation based on fractal characteristics obtained using 2 scenarios, one-and multi-fractal dimension scenarios. The results of this study indicate that the multi-fractal dimension scenario provides a better prediction of aggregate gradation due to the ability of this scenario to better represent the shape of the original aggregate gradation. However, careful consideration must be observed when using more than two fractal dimensions in predicting aggregate gradation as it will increase the difficulty in developing the fractal characteristic equations.


2021 ◽  
Vol 5 (4) ◽  
pp. 152
Author(s):  
Shao-Heng He ◽  
Zhi Ding ◽  
Hai-Bo Hu ◽  
Min Gao

In this study, a series of nuclear magnetic resonance (NMR) tests was conducted on calcareous sand, quartz sand, and glass bead with a wide range of grain sizes, to understand the effect of grain size on the micro-pore structure and fractal characteristics of the carbonate-based sand and silicate-based sand. The pore size distribution (PSD) of the tested materials were obtained from the NMR T2 spectra, and fractal theory was introduced to describe the fractal properties of PSD. Results demonstrate that grain size has a significant effect on the PSD of carbonate-based sand and silicate-based sand. As grain size increases, the PSD of sands evolves from a binary structure with two peaks to a ternary structure with three peaks. The increase in the grain size can cause a remarkable increase in the maximum pore size. It is also found that the more irregular the particle shape, the better the continuity between the large and medium pores. In addition, grain size has a considerable effect on the fractal dimension of the micro-pore structure. The increase of grain size can lead to a significant increase in the heterogeneity and fractal dimension in PSD for calcareous sand, quartz sand and glass bead.


2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


2012 ◽  
Vol 204-208 ◽  
pp. 1923-1928
Author(s):  
Bo Tan ◽  
Rui Hua Yang ◽  
Yan Ting Lai

The paper presents the fractal dimension formula of distribution of asphalt mixture aggregate diameter by the deducing mass fractal characteristics function. Taking AC-20 and SMA-20 as examples, selected 6 groups of representative grading curves within the grading envelope proposed by the present specification, and calculated their fractal dimensions. The asphalt mixture gradation has fractal dimension D (D∈(1,3)), and the fractal of continuous gradation is single while the fractal of gap-gradation shows multi-fractal with 4.75 as the dividing point. Fractal dimension of aggregate gradation of asphalt mixture reflect the structure characteristics of aggregate distribution, that is, finer is aggregate, bigger is the fractal dimension.


Author(s):  
Cheng Zhu ◽  
Tian Yu ◽  
Qing Chang ◽  
Jorge Arinez

Abstract In a multistage serial production line, products with defect can be repaired or reworked to ensure high product quality. This paper studies a multistage serial manufacturing system with quality rework loops. Rework is the activity to repair or repeat the work on the defect parts during manufacturing processes, and it adds to cost and cycle time. This paper introduces an event-based data-enabled mathematical model for a stochastic production line with quality rework loops. The system performance properties are analyzed and permanent production loss due to quality rework loops is identified. The mathematical model and system performance identification methodology are studied analytically through numerical case studies.


2021 ◽  
pp. 43-54
Author(s):  
A. N. Krutov ◽  
◽  
S. Ya. Shkol’nikov ◽  

The mathematical model of kinematic wave, that is widely used in hydrological calculations, is generalized to compute processes in deformable channels. Self-similar solutions to the kinematic wave equations, namely, the discontinuous wave of increase and the “simple” wave of decrease are generalized. A numerical method is proposed for solving the kinematic wave equations for deformable channels. The comparison of calculation results with self-similar solutions revealed a good agreement.


2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Ibrahim A Abuashe ◽  
Bashir H Arebi ◽  
Essaied M Shuia

A mathematical model based on the momentum, continuity and energy balance equations was developed to simulate the behavior of the air flow inside the solar chimney system. The model can estimate the power output and performance of solar chimney systems. The developed mathematical model is validated by the experimental data that were collected from small pilot solar chimney; (experiment was presented in part I). Good agreement was obtained between the experimental results and that from the mathematical model. The model can be used to analyze the solar chimney systems and to determine the effect of geometrical parameters such as chimney height and collector diameter on the power output and the efficiency of the system


2020 ◽  
Vol 12 (18) ◽  
pp. 7350
Author(s):  
Qindong Fan ◽  
Fengtian Du ◽  
Hu Li

In order to improve the study of the spatial form of villages, fractal theory is used to analyze the plane and facade of Maling Village, Changdai Town, Mengjin County, Luoyang City, Henan Province, China. The results show that the village facade and plane spatial shape of Maling Village have obvious fractal characteristics and the fractal dimension can be used as an important index to evaluate the plane and facade shape of the village. The fractal dimension of each land use type is between 1.2415 and 1.7443. The stability index of land use types in the village follows the order of village construction land > cultivated land > road > garden land > woodland > grassland. The research results can provide decision-making information for the rational use and planning of village land.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Zhaoyun Chai ◽  
Jinbo Bai ◽  
Haiyang Zhang ◽  
Pan Yang

Failure of rocks is commonly induced by compressive and shear coupling loading. Knowledge of the mechanism and process of deformation and failure of rocks under compressive shear loading condition is an important basis for the study of stability in rock engineering. Based on the nonlinear fractal theory, it is possible to examine the evolution rules of fractures in mudstone under compression shear load and the fractal characteristics of broken blocks using the shear compression test with variable angles of mudstone specimens in natural conditions. This research shows that the cohesion and friction angle parameters of rock samples are achieved by draw Mohr’s strength envelope according to the test date of variable-angle shear compression test. It also shows that the shape of load-displacement curves of rocks can be divided into four stages: compaction, elastic, plastic, and fracture, and the curve can accurately represent the transformation and breakage characteristics of rock during shear fracture. And the distribution of broken blocks shows a strong statistical resemblance to the fractal distribution, and the fractal dimension is able to reflect the distribution characteristics of broken blocks. With increasing the shear angle, the fractal dimension of broken blocks decreases in a logarithmic relationship.


Sign in / Sign up

Export Citation Format

Share Document