Preparation of Organic/Inorganic Nanocomposites with Microwave Process

2006 ◽  
Vol 317-318 ◽  
pp. 669-672 ◽  
Author(s):  
D.H. Kim ◽  
Seong Soo Park ◽  
B.S. Jun ◽  
Jong Kook Lee ◽  
Kyu Hong Hwang ◽  
...  

Polymer/layered silicate nanocomposities were prepared by in situ polymerization with microwave process. The influence of the amount of clay on the structure and thermal properties for the synthesized nanocomposites were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). It was found that the structure of nanocomposites, an intercalated/exfoliated structure, depended on the clay content.

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Fan Xufen ◽  
Chen Dajun

AbstractPoly (ethylene terephthalate) (PET)/Attapulgite (AT) nanocomposites were prepared via in-situ polymerization. According to the observation of transmission electron microscopy (TEM), attapulgite is well dispersed in the PET matrix in a nanometer scale. The influence of attapulgite content on the nonisothermal crystallization kinetics was studied using a classical Avrami equation with Jeziorny method. The crystalline structures of the pure PET and PET/AT nanocomposites with different amount of AT (0.2%, 0.5%, 1%, 2%) were characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) methods. It was found that the crystallization temperature for PET/AT nanocomposites with 0.2% and 0.5% content of AT were higher than pure PET and the rate of crystallization of all PET/AT nanocomposite samples increased significantly which indicated that attapulgite could be used as an effective nucleating agent in PET. However, with the addition of AT, smaller crystalline size, more crystalline defects and lower degree of crystallization was demonstrated.


2008 ◽  
Vol 23 (12) ◽  
pp. 3330-3338 ◽  
Author(s):  
Sonia Zulfiqar ◽  
Muhammad Ilyas Sarwar

Oligomerically modified reactive montmorillonite clay was used in the preparation of aramid-layered silicate nanocomposites. The dispersion behavior of organoclay was monitored in the aramid matrix synthesized from 4-aminophenylsulfone and isophthaloyl chloride in dimethylacetamide. These polyamide chains were end-capped with carbonyl chloride groups to interact chemically with oligomerically modified layered silicate. Thin composite films containing 2 to 20 wt% of organoclay were probed for x-ray diffraction (XRD), transmission electron microscopy (TEM), mechanical testing, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and water absorption measurements. XRD and TEM results described the distribution level of clay platelets and morphology of hybrid materials. Mechanical measurements revealed that modulus and strength improved up to 6 wt% clay loading, while toughness of nanocomposites increased with the addition of 2 wt% clay content in the matrix. The elongation showed a decreasing trend with increasing clay content in the hybrids. Thermal-decomposition temperatures of the nanocomposites were in the range 225 to 450 °C. The glass-transition temperature increased up to 12 wt% addition of organoclay in the matrix relative to pristine aramid depicting interfacial interactions among the phases. Water absorption of the nanocomposites reduced with augmenting organoclay loading, indicating decreased permeability.


2013 ◽  
Vol 457-458 ◽  
pp. 244-247
Author(s):  
Min Li ◽  
Li Guang Xiao ◽  
Hong Kai Zhao

Polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by in situ polymerization. The morphology of MMT/MgCl2/TiCl4 catalyst and PE/MMT nanocomposites was investigated by scanning electron microscopy (SEM). It can be seen that MMT/MgCl2/TiCl4 catalyst remained the original MMT sheet structures and many holes were found in MMT and the morphology of PE/MMT nanocomposites is part of the sheet in the form of existence, as most of the petal structure. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were carried out to characterize all the samples. XRD results reveal that the original basal reflection peak of PEI1 and PEI2 disappears completely and that of PEI3 become very weak. MMT/MgCl2/TiCl4 catalyst was finely dispersed in the PE matrix. Instead of being individually dispersed, most layers were found in thin stacks comprising several swollen layers.


2018 ◽  
Vol 32 (8) ◽  
pp. 1078-1091 ◽  
Author(s):  
Sibel Erol Dağ ◽  
Pınar Acar Bozkurt ◽  
Fatma Eroğlu ◽  
Meltem Çelik

A series of polystyrene (PS)/unmodified Na-montmorillonite (Na-MMT) composites were prepared via in situ radical polymerization. The prepared composites were characterized using various techniques. The presence of various functional groups in the unmodified Na-MMT and PS/unmodified Na-MMT composite was confirmed by Fourier transform infrared spectroscopy. Morphology and particle size of prepared composites was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). According to the XRD and TEM results, the interlayer spacing of MMT layers was expanded. SEM images showed a spongy and porous-shaped morphology of composites. TEM revealed the Na-MMT intercalated in PS matrix. The thermal stability of PS/unmodified Na-MMT composites was significantly improved as compared to PS, which is confirmed using thermogravimetric analysis (TGA). The TGA curves indicated that the decomposition temperature of composites is higher at 24–51°C depending on the composition of the mixture than that of pure PS. The differential scanning calorimetry (DSC) results showed that the glass transition temperature of composites was higher as compared to PS. The moisture retention, water uptake, Brunauer–Emmett–Teller specific surface area, and specific pore volume of composites were also investigated. Water resistance of the composites can be greatly improved.


2019 ◽  
Vol 91 (6) ◽  
pp. 957-965
Author(s):  
Meltem Akkulak ◽  
Yasemin Kaptan ◽  
Yasar Andelib Aydin ◽  
Yuksel Avcibasi Guvenilir

Abstract In this study, rice husk ash (RHA) silanized with 3-glycidyloxypropyl trimethoxysilane was used as support material to immobilize Candida antarctica lipase B. The developed biocatalyst was then utilized in the ring opening polymerization (ROP) of ε-caprolactone and in situ development of PCL/Silica nanohybrid. The silanization degree of RHA was determined as 4 % (w) by thermal gravimetric analysis (TGA). Structural investigations and calculation of molecular weights of nanohybrids were realized by proton nuclear magnetic resonance (1H NMR). Crystallinity was determined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Scanning Electron Microscopy (SEM) was used for morphological observations. Accordingly, the PCL composition in the nanohybrid was determined as 4 %, approximately. Short chained amorphous PCL was synthesized with a number average molecular weight of 4400 g/mol and crystallinity degree of 23 %. In regards to these properties, synthesized PCL/RHA composite can find use biomedical applications.


Author(s):  
Khalil Faghihi ◽  
Mostafa Ashouri ◽  
Akram Feyzi

<p>A series of nanocomposites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt%, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nanocomposite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane (APB) and 3،3΄،4،4΄-benzophenone tetra carboxylic dianhydride (BTDA) in N,N-dimethylacetamide (DMAc). The resulting nanocomposite films were characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA).</p>


2014 ◽  
Vol 875-877 ◽  
pp. 150-154 ◽  
Author(s):  
Tsung Yen Tsai ◽  
Wen Chi Chen ◽  
Guan Ren Zhou ◽  
Wei Chuan Shiu

This study uses in-situ polymerization method due to organic modified montmorillonite into unsaturated polyester to form a advanced montmorillonite / unsaturated polyester (MMT /UP) nanocomposites. Using of the blasting force generated in situ polymerization patterns show the formation of clay layers is exfoliation structure in polymer and improving of thermal properties, flame retardant properties, and mechanical properties.The d-spacing of organic modified clay could be determined whether the modifier was intercalated into the gallery of clay by applying the wide-angle X-ray diffraction (WXRD). The functional groups of modified clay were measured by Fourier infrared spectroscopy (FT-IR). The dispersion morphologies of MMT / UP nanocomposites were characterized by the wide-angle X-ray diffraction (WXRD) and transmission electron microscopy (TEM). The thermal properties and mechanical properties were investigated by thermal gravimetric analysis (TGA), limiting oxygen index meter (LOI), cone calorimeter (Heat Release Rate) and a dynamic mechanical analyzer (DMA).


2011 ◽  
Vol 399-401 ◽  
pp. 444-448 ◽  
Author(s):  
Jun Qian Mu ◽  
Yi Yang ◽  
Zhi Han Peng

In this paper, a novel flame retarded MCA-PA6 (PA6 incorporated with melamine cyanurate) resin was synthesized by in-situ polymerization. The synthetic product was characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Fourier transform infrared spectroscope (FTIR), thermogravimetry analysis (TG), differential scanning calorimetry (DSC) and elemental analysis. The result showed that good dispersability were obtained in MCA-based PA6 prepared successfully. Meanwhile, the maximum mass loss rate appeared at about 450 °C and the residual char increased from 1.2 wt% to 3.2 wt% at 500 °C due to the existence of MCA.This research revealed MCA-PA6 owned a good thermal stability, hence there was potential flame retardance.


2016 ◽  
Vol 30 (12) ◽  
pp. 1603-1614 ◽  
Author(s):  
BTS Ramanujam ◽  
S Radhakrishnan ◽  
SD Deshpande

Polyphenylene sulfide (PPS)-expanded graphite (ExGr) conducting nanocomposites have been prepared by powder mixing and in situ polymerization routes after sonicating ExGr particles in acetone. Synthesized PPS has been used to make powder mixed composites. The powder mixed composites exhibit a percolation threshold of 3 wt% due to the formation of graphite nanosheets. When PPS-ExGr composites are prepared by in situ polymerization route, very low electrical percolation threshold less than 0.5 wt% ExGr is obtained. The low percolation threshold obtained is attributed to better dispersion of ExGr nanosheets in the polymer matrix when compared to powder mixed composites. The synthesized PPS has been characterized by X-ray diffraction, differential scanning calorimetry, and infrared spectroscopy. The formation of graphite nanosheets has been confirmed by transmission and scanning electron microcopy analysis.


Author(s):  
Hemalatha Parangusan ◽  
Jolly Bhadra ◽  
Zubair Ahmad ◽  
Shoaib Mallick ◽  
Farid Touati ◽  
...  

In this letter, we report the structural, morphological and CO2 gas sensing properties of the polyaniline (PANI) coated Cu-ZnS microspheres. PANI coated Cu-ZnS microspheres were prepared by hydrothermal and in-situ polymerization method. X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to investigate the structural and morphological properties. The fabricated sensor based on PANI coated Cu-ZnS microspheres exhibits good CO2 sensing performance with rapid response (31 s) and recovery (23 s) times.


Sign in / Sign up

Export Citation Format

Share Document