Force Measurement by AFM Cantilever with Different Coating Layers

2006 ◽  
Vol 326-328 ◽  
pp. 377-380 ◽  
Author(s):  
Meng Kao Yeh ◽  
Bo Yi Chen ◽  
Nyan Hwa Tai ◽  
Chien Chao Chiu

Atomic force microscopy (AFM) is widely used in many fields, because of its outstanding force measurement ability in nano scale. Some coating layers are used to enhance the signal intensity, but these coating layers affect the spring constant of AFM cantilever and the accuracy of force measurement. In this paper, the spring constants of rectangular cantilever with different coating thickness were quantitatively measured and discussed. The finite element method was used to analyze the nonlinear force-displacement behavior from which the cantilever’s normal and torsional spring constants could be determined. The experimental data and the numerical results were also compared with the results from other methods. By considering the influence of coating layers and real cantilever geometries, the more accurate force measurements by AFM cantilever can be obtained.

Author(s):  
Sudipta Dutta ◽  
Mahesh Kumar Singh ◽  
M. S. Bobji

Atomic force microscopy based force-displacement spectroscopy is used to quantify magnetic interaction force between sample and magnetic cantilever. AFM based F–D spectroscopy is used widely to understand various surface-surface interaction at small scale. Here we have studied the interaction between a magnetic nanocomposite and AFM cantilevers. Two different AFM cantilever with same stiffness but with and without magnetic coating is used to obtain F–D spectra in AFM. The composite used has magnetic Ni nanophase distributed uniformly in an Alumina matrix. Retrace curves obtained using both the cantilevers on magnetic composite and sapphire substrate are compared. It is found for magnetic sample cantilever comes out of contact after traveling 100 nm distance from the actual point of contact. We have also used MFM imaging at various lift height and found that beyond 100nm lift height magnetic contrast is lost for our composite sample, which further confirms our F–D observation.


2010 ◽  
Vol 24 (18) ◽  
pp. 3597-3606
Author(s):  
HYUNKYU KWEON ◽  
KIHO NAM

This study introduces a new method of measuring the stiffness (spring constant) of cantilevers that is designed to improve the measurement accuracy of (atomic force microscopy) (AFM). AFM cantilever spring constants are determined by the relation between the slope of the step height ascertained from the surface profile measurement results, and the size of the cantilever. The surface profile measurements of the standard specimens with three different step heights (height: 100, 500, and 1000 nm) were conducted using a standard cantilever with different stiffness. As a result of this exercise, the profile slope was found to be proportional to cantilever stiffness, and the necessity was uncovered to conduct a similar experiment in order to clarify the quantitative relation between stiffness and the profile slope when the same kind of cantilever is utilized.


2013 ◽  
Vol 4 ◽  
pp. 385-393 ◽  
Author(s):  
Daniel Kiracofe ◽  
Arvind Raman ◽  
Dalia Yablon

One of the key goals in atomic force microscopy (AFM) imaging is to enhance material property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors explore the use of higher eigenmodes in bimodal AFM (e.g., exciting the first and fourth eigenmodes). It is found that such operation leads to interesting contrast reversals compared to traditional bimodal AFM. A series of experiments and numerical simulations shows that the primary cause of the contrast reversals is not the choice of eigenmode itself (e.g., second versus fourth), but rather the relative kinetic energy between the higher eigenmode and the first eigenmode. This leads to the identification of three distinct imaging regimes in bimodal AFM. This result, which is applicable even to traditional bimodal AFM, should allow researchers to choose cantilever and operating parameters in a more rational manner in order to optimize resolution and contrast during nanoscale imaging of materials.


2004 ◽  
Vol 49 (2) ◽  
pp. 183-190 ◽  
Author(s):  
S. Dunn ◽  
S. Impey ◽  
C. Kimpton ◽  
S.A. Parsons ◽  
J. Doyle ◽  
...  

Stainless steel, polymethylmethacrylate and polytetrafluoroethylene coupons were analysed for surface topographical and adhesion force characteristics using tapping mode atomic force microscopy and force-distance microscopy techniques. The two polymer materials were surface modified by polishing with silicon carbide papers of known grade. The struvite scaling rate was determined for each coupon and related to the data gained from the surface analysis. The scaling rate correlated well with adhesion force measurements indicating that lower energy materials scale at a lower rate. The techniques outlined in the paper provide a method for the rapid screening of materials in potential scaling applications.


2018 ◽  
Vol 2 (4) ◽  
pp. 60 ◽  
Author(s):  
Milad Radiom ◽  
Patricia Pedraz ◽  
Georgia Pilkington ◽  
Patrick Rohlmann ◽  
Sergei Glavatskih ◽  
...  

We investigate the interfacial properties of the non-halogenated ionic liquid (IL), trihexyl(tetradecyl)phosphonium bis(mandelato)borate, [P6,6,6,14][BMB], in proximity to solid surfaces, by means of surface force measurement. The system consists of sharp atomic force microscopy (AFM) tips interacting with solid surfaces of mica, silica, and gold. We find that the force response has a monotonic form, from which a characteristic steric decay length can be extracted. The decay length is comparable with the size of the ions, suggesting that a layer is formed on the surface, but that it is diffuse. The long alkyl chains of the cation, the large size of the anion, as well as crowding of the cations at the surface of negatively charged mica, are all factors which are likely to oppose the interfacial stratification which has, hitherto, been considered a characteristic of ionic liquids. The variation in the decay length also reveals differences in the layer composition at different surfaces, which can be related to their surface charge. This, in turn, allows the conclusion that silica has a low surface charge in this aprotic ionic liquid. Furthermore, the effect of temperature has been investigated. Elevating the temperature to 40 °C causes negligible changes in the interaction. At 80 °C and 120 °C, we observe a layering artefact which precludes further analysis, and we present the underlying instrumental origin of this rather universal artefact.


1998 ◽  
Vol 31 (13) ◽  
pp. 4297-4300 ◽  
Author(s):  
Tommie W. Kelley ◽  
Phillip A. Schorr ◽  
Kristin D. Johnson ◽  
Matthew Tirrell ◽  
C. Daniel Frisbie

Sign in / Sign up

Export Citation Format

Share Document