Fabrication and Properties of Absolutely Recycled Plastic Wood Composites

2007 ◽  
Vol 334-335 ◽  
pp. 5-8 ◽  
Author(s):  
Yi Hua Cui ◽  
Stephen Lee ◽  
Bahman Noruziaan ◽  
Moe M.S. Cheung ◽  
Jie Tao

In this study, the absolutely recycled plastic wood (ARCPW) was fabricated with post-consumer high density polyethylene (HDPE) and wood flour from the saw mills. The alkaline, silane and maleic anhydride modified polypropylene (MAPP) were used as modifiers to treat wood fiber and improve the interfacial adhesion of ARCPW. Effects of wood fiber length, weight fraction and surface treatment on the mechanical properties of ARCPW were investigated. The flexural fracture surfaces of ARCPW were examined and the fracture mechanism of ARCPW was also analyzed in this paper. The results indicated that ARCPW with wood fiber simultaneously treated by alkaline, silane and MAPP possesses the best mechanical properties. The higher the content of wood fiber, the better the flexural strength of ARPCW. The interfacial adhesion of prepared ARCPW is ideal and a good compatibility between wood fiber and matrix was obtained.

2014 ◽  
Vol 695 ◽  
pp. 592-595
Author(s):  
M.P.M. Hanif ◽  
A.G. Supri ◽  
Firuz Zainuddin

The effect of maleic anhydride as a coupling agent on the tensile properties and morphology of recycled high density polyethylene/wood fiber (rHDPE/WF) composites were studied. rHDPE/WF composites with different wood fiber loading and the addition of maleic anhydride were prepared with Brabender Plasticorder at temperature of 160°C and rotor speed of 50 rpm. The result indicated that rHDPE/WFM composites with maleic anhydride exhibit higher tensile strength and modulus of elasticity than rHDPE/WF composites. rHDPE/WFM with maleic anhydride composites gave a better interfacial adhesion between the matrix and the fiber than rHDPE/WF composites as evidence using Scanning electron microscopy (SEM).


2010 ◽  
Vol 150-151 ◽  
pp. 379-385
Author(s):  
Qun Lü ◽  
Qing Feng Zhang ◽  
Hai Ke Feng ◽  
Guo Qiao Lai

The wood-plastic composites (WPC) were prepared via compress molding by using the blends of high density polyethylene (HDPE) and modified polyethylene (MAPE) as the matrix and wood flour (WF) as filler. The effect of MAPE content in the matrix on the mechanical properties of the matrix and WPC was investigated. It was shown that the change of MAPE content in the matrix had no influence on the tensile strength of the matrix, but markedly reduced the impact strength of the matrix. Additionally, it had significant influence on the strength of WPC. When the content of wood flour and the content of the matrix remained fixed, with increasing the content of MAPE in the matrix, the tensile strength and the flexural strength of WPC tended to increase rapidly initially and then become steady. Moreover, with the increasing of MAPE concentration, the impact strength of WPC decreased when the low content of wood flour (30%) was filled, but increased at high wood flour loading (70%).


2007 ◽  
Vol 23 (3) ◽  
pp. 153-167
Author(s):  
Thomas N. Abraham ◽  
K.E. George

A commercial grade of high-density polyethylene (HDPE) reinforced with nylon 6 fibres of three diameters at levels up to 30 wt% HDPE. The addition of the fibres resulted in improvements in mechanical properties such as tensile strength and flexural strength. Fibres having the least diameter gave the maximum improvement in mechanical properties. Attempts were made to improve the interfacial adhesion between the fibres and the matrix by grafting the matrix with maleic anhydride and also with styrene maleic anhydride. The mechanical properties showed significant improvements as a result of these modifications. The HDPE/nylon composites/blends obtained by recycling the composites also show good mechanical properties.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 249
Author(s):  
Han-Seung Ko ◽  
Sangwoon Lee ◽  
Doyoung Lee ◽  
Jae Young Jho

To enhance the mechanical strength and bioactivity of poly(lactic acid) (PLA) to the level that can be used as a material for spinal implants, poly(glycolic acid) (PGA) fibers and hydroxyapatite (HA) were introduced as fillers to PLA composites. To improve the poor interface between HA and PLA, HA was grafted by PLA to form HA-g-PLA through coupling reactions, and mixed with PLA. The size of the HA particles in the PLA matrix was observed to be reduced from several micrometers to sub-micrometer by grafting PLA onto HA. The tensile and flexural strength of PLA/HA-g-PLA composites were increased compared with those of PLA/HA, apparently due to the better dispersion of HA and stronger interfacial adhesion between the HA and PLA matrix. We also examined the effects of the length and frequency of grafted PLA chains on the tensile strength of the composites. By the addition of unidirectionally aligned PGA fibers, the flexural strength of the composites was greatly improved to a level comparable with human compact bone. In the bioactivity tests, the growth of apatite on the surface was fastest and most uniform in the PLA/PGA fiber/HA-g-PLA composite.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1660
Author(s):  
Young-Rok Seo ◽  
Sang-U Bae ◽  
Jaegyoung Gwon ◽  
Qinglin Wu ◽  
Birm-June Kim

Polylactic acid (PLA)/polybutylene succinate (PBS)/wood flour (WF) biocomposites were fabricated by in situ reactive extrusion with coupling agents. Methylenediphenyl 4,4’-diisocyanate (MDI) and maleic anhydride (MA) were used as coupling agents. To evaluate the effects of MDI and MA, various properties (i.e., interfacial adhesion, mechanical, thermal, and viscoelastic properties) were investigated. PLA/PBS/WF biocomposites without coupling agents revealed poor interfacial adhesion leading to deteriorated properties. However, the incorporation of MDI and/or MA into biocomposites showed high performances by increasing interfacial adhesion. For instance, the incorporation of MDI resulted in improved tensile, flexural, and impact strengths and an increase in tensile and flexural modulus was observed by the incorporation of MA. Specially, remarkably improved thermal stability was found in the PLA/PBS/WF biocomposites with 1 phr MDI and 1 phr MA. Also, the addition of MDI or MA into biocomposites increased the glass transition temperature and crystallinity, respectively. For viscoelastic property, the PLA/PBS/WF biocomposites with 1 phr MDI and 1 phr MA achieved significant enhancement in storage modulus compared to biocomposites without coupling agents. Therefore, the most balanced performances were evident in the PLA/PBS/WF biocomposites with the hybrid incorporation of small quantities of MDI and MA.


2018 ◽  
Vol 773 ◽  
pp. 94-99 ◽  
Author(s):  
Venitalitya Augustia ◽  
Achmad Chafidz ◽  
Lucky Setyaningsih ◽  
Muhammad Rizal ◽  
Mujtahid Kaavessina ◽  
...  

The trend of using natural fibers as green filler in the fabrication of polymer composites is increasing. One of these natural fibers is date palm fiber (DPF). Date palm fiber is considered as agricultural waste in certain areas, such as Middle East countries. Therefore, the utilization of this fiber in the composites fabrication is an interesting topic of research. In the current study, composites were prepared by melt blending DPF with high density polyethylene (HDPE). Five different DPF loadings were studied (i.e. 0, 5, 10, 20, 30 wt%). The effect of the DPF loadings on the mechanical properties and water absorption behavior of the composites were investigated. The tensile test result showed that tensile strengths of all the composites samples were all higher than the neat HDPE with the maximum improvement was achieved at the DPF loading of 5 wt% (i.e. DFC-5), which was about 19.23 MPa (138% higher than the neat HDPE). Whereas, the flexural test result showed that the flexural strength of the composites slightly increased compared to that of the neat HDPE only until 5 wt% DPF loading (i.e. DFC-5). Afterward, the flexural strength of the DFC-10 was equal to that of the neat HDPE, and decreasing with further increase of DPF loadings. Additionally, the water absorption test result showed that the water absorption rate and uptake of water (at equilibrium) increased with the increase of DPF loading.


2012 ◽  
Vol 182-183 ◽  
pp. 274-277
Author(s):  
Fang Huang

Wood flour is inexpensive, and can be used as a reinforcing agent to improve the mechanical properties of high density polyethylene, reduce cost. Wood fiber as a renewable natural material, biodegradation, therefore, high filling wood powder high density polyethylene composite material with certain environmental compatibility, at the same time, high density polyethylene can be a source of waste recycling materials, therefore plastic-wood composite material is a kind of can reduce the "white pollution" environmental material. [1-5]


2011 ◽  
Vol 55-57 ◽  
pp. 447-450 ◽  
Author(s):  
Jian Li ◽  
Zheng Qun Huang ◽  
Yan Qin

In this article, a kind of SMC artificial marble was prepared. In order to enhance the mechanical properties and prolong the using life of SMC artificial marble, some effects such as fiber content, filler content and molding temperature etc. on the mechanical properties were carefully studied, too. Results showed that the increase of fiber content could improve the impact strength of SMC artificial marble when the fiber length was 10mm and the increase of filler content would decrease the flexural strength of SMC artificial marble. And the molding temperature at the range of 130°C ~ 160°C had little influence on the mechanical properties of SMC artificial marble. Comparing with natural marble and casting marble, SMC artificial marble owed superior overall performance and it was much more suitable for industry production.


RSC Advances ◽  
2017 ◽  
Vol 7 (40) ◽  
pp. 24895-24902 ◽  
Author(s):  
Jinlong Zhang ◽  
Qinglin Wu ◽  
Guangyao Li ◽  
Mei-Chun Li ◽  
Xiuxuan Sun ◽  
...  

High density polyethylene and wood flour (HDPE/WF) composites containing three flame modifiers (FMs) (i.e., two fire retardants: 1,2-bis(pentabromophenyl) and ethylene bis(tetrabromophthalimide), and one nanoclay), maleic anhydride grafted polyethylene (MAPE) and other processing aids were prepared through twin-screw extrusion, and their properties were characterized.


Sign in / Sign up

Export Citation Format

Share Document