Effect of Shot Strip Interval and Shot Times on Laser Shot Peen-Forming with Repetition Laser Pulse

2007 ◽  
Vol 353-358 ◽  
pp. 199-202
Author(s):  
Chao Jun Yang ◽  
Yong Kang Zhang ◽  
Jian Zhong Zhou ◽  
Ming Yong Ni ◽  
Jian Jun Du ◽  
...  

Laser shot peen-forming of sheet metal(or LasershotSM Peening) is a new plastic forming technique for metallic materials, which uses high-power pulsed laser replacing the tiny balls to peen the surface of sheet metal. When the pressure of shock waves induced by laser impresses an inhomogeneous residual stresses distribution in a given depth on the surface of sheet, it responds to the stress by elongating at the peened surface and effectively bending the sheet. In order to investigate the mechanism of laser shot peen-forming, the narrow strip peen-forming experimental of aluminum alloy 6061-T6 was carried out by using a pulsed Nd:glass laser with 0.5Hz repetition-rate. Here, under some given laser energy, laser pulse width, laser beam diameter and pulse repetition frequency and so on, the influence of shot strip interval and shot times on surface residual stresses and the deformation of the sheet is analyzed. The results show that the bending forming of the sheet metal can be found, and the peened surface of sheet metal becomes convex. That the bending increases with shot strip interval increase is not obvious, but it increases with the shot times increase in a proper range of shot times. Besides, because laser shot peen-forming generates compressive residual stresses on the surface, it offers many desirable characteristics in shaped metals and is a valuable technique for producing components for a range of industries.

Author(s):  
Yongxiang Hu ◽  
Yefei Han ◽  
Zhenqiang Yao ◽  
Jun Hu

Laser peen forming (LPF) is a purely mechanical forming method achieved through the use of laser energy to form complex shapes or to modify curvatures. It is flexible and independent of tool inaccuracies that result from wear and deflection. Its nonthermal process makes it possible to form without material degradation or even improve them by inducing compressive stress over the target surface. In the present study, a fully three-dimensional numerical model is developed to simulate the forming process of laser peen forming. The simulation procedure is composed of several steps mainly including the shock pressure prediction, the modal analysis, and the forming process calculation. System critical damping is introduced to prevent unnecessary long post-shock residual oscillations and to greatly decrease the solution time for simulation. The bending profiles and angles with different thicknesses are experimentally measured at different scanning lines and scanning velocities to understand the process and validate the numerical model. The calculated bending profiles and angles agree well with the trend of the measured results. But it is found that simulations with the Johnson–Cook model are more consistent, matching the experimental results for the thick sheet metal with a convex bending, while the elastic-perfectly-plastic model produces a better agreement even though with underestimated values for the thinner sheet metal with a concave bending. The reason for this phenomenon is discussed, combining the effects of strain rate and feature size. Both the simulation and the experiments show that a continuous decrease in bending angle from concave to convex is observed with increasing specimen thickness in general. Large bending distortion is easier to induce by generating a concave curvature with LPF, and the angle of bending distortion depends on the number of laser shocks.


2014 ◽  
Vol 996 ◽  
pp. 568-573 ◽  
Author(s):  
Johannes Preußner ◽  
Sabine Oeser ◽  
Wulf Pfeiffer ◽  
André Temmler ◽  
Edgar Willenborg

A new approach to structure metallic surfaces with laser radiation is structuring by remelting. In this process no material is removed but reallocated by melting. The laser power was adapted linearly to the increasing laser beam diameter for laser remelted (polished) samples. A carbon depleted area could be found close to the remelted zone accompanied with a local minimum in hardness. The surface residual stresses tend from tensile to compressive with increasing laser beam diameter/laser power and number of repetitions for laser structured and laser remelted samples. The residual stresses are a result of combined shrinkage (tensile) and transformation (compressive) stresses.


2011 ◽  
Vol 464 ◽  
pp. 33-37
Author(s):  
Shu Huang ◽  
Jian Zhong Zhou ◽  
X.D. Yang ◽  
Hong Yan Ruan ◽  
Deng Hui Wei ◽  
...  

After the mechanisms of laser peen forming (LPF) were analyzed, the effect of sheet metal’s thickness on LPF was discussed in theory. The analysis model that residual stresses brought sheet bending was established, and the relationship between thickness and arc height of sheet metal was obtained. The process of laser shock wave loading during LPF was modeled, and then the residual stresses and deformation of the peened sheet were simulated by ABAQUS software. The results indicated that LPF use bending moments caused by residual stress to induce deformation, which was agreed with the theory analysis. The curvature of sheet metal induced by LPF decreased as the thickness increased, the arc height formed by bending was inversely proportional to thickness square of sheet metal on the whole. This research also has significance for the control of LPF and the investigation of further experiment


Author(s):  
Chao Jun Yang ◽  
Yong Kang Zhang ◽  
Jian Zhong Zhou ◽  
Ming Yong Ni ◽  
Jian Jun Du ◽  
...  
Keyword(s):  

Author(s):  
Dhia Charni ◽  
Svetlana Ortmann-Ishkina ◽  
Marius Herrmann ◽  
Christian Schenck ◽  
Jérémy Epp

AbstractThe radial infeed rotary swaging is widely used as a diameter reduction forming process of axisymmetric workpieces, improving the mechanical properties with excellent near net shape forming. In the present study, rotary swaging experiments with different parameter setups were performed on steel tubes and bars under different material states and several resulting property modifications were investigated such as stress-strain curve, hardness, fatigue strength and surface residual stresses. The results show a significant work hardening induced by the rotary swaging process and an improvement in the static and dynamic mechanical properties was observed. Furthermore, the hardness distribution was homogenous in the cross section of the rotary swaged workpieces. Moreover, depending on the process conditions, different residual stresses distribution were generated along the surface.


2013 ◽  
Vol 747-748 ◽  
pp. 723-732 ◽  
Author(s):  
Ru Xiong ◽  
Ying Jie Qiao ◽  
Gui Liang Liu

This discussion reviewed the occurrence of stress corrosion cracking (SCC) of alloys 182 and 82 weld metals in primary water (PWSCC) of pressurized water reactors (PWR) from both operating plants and laboratory experiments. Results from in-service experience showed that more than 340 Alloy 182/82 welds have sustained PWSCC. Most of these cases have been attributed to the presence of high residual stresses produced during the manufacture aside from the inherent tendency for Alloy 182/82 to sustain SCC. The affected welds were not subjected to a stress relief heat treatment with adjacent low alloy steel components. Results from laboratory studies indicated that time-to-cracking of Alloy 82 was a factor of 4 to 10 longer than that for Alloy 182. PWSCC depended strongly on the surface condition, surface residual stresses and surface cold work, which were consistent with the results of in-service failures. Improvements in the resistance of advanced weld metals, Alloys 152 and 52, to PWSCC were discussed.


2011 ◽  
Vol 29 (3) ◽  
pp. 345-351 ◽  
Author(s):  
C.M. Brenner ◽  
J.S. Green ◽  
A.P.L. Robinson ◽  
D.C. Carroll ◽  
B. Dromey ◽  
...  

AbstractThe scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15–380 mJ at intensities of 1016–1018 W/cm2. The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.


1994 ◽  
Vol 116 (4) ◽  
pp. 550-555 ◽  
Author(s):  
M. Gremaud ◽  
W. Cheng ◽  
I. Finnie ◽  
M. B. Prime

Introducing a thin cut from the surface of a part containing residual stresses produces a change in strain on the surface. When the strains are measured as a function of the depth of the cut, residual stresses near the surface can be estimated using the compliance method. In previous work, the unknown residual stress field was represented by a series of continuous polynomials. The present paper shows that for stress states with steep gradients, superior predictions are obtained by using “overlapping piecewise functions” to represent the stresses. The stability of the method under the influence of random errors and a zero shift is demonstrated by numerical simulation.


2012 ◽  
Vol 723 ◽  
pp. 208-213 ◽  
Author(s):  
Yi Wan ◽  
Chen Li ◽  
Zhan Qiang Liu ◽  
Shu Feng Sun

Residual stresses generated in milling process affect the performance of machined components. Milling residual stresses correlate closely with the cutting parameters. In this paper, the generation and distribution of surface residual stresses in milling of aluminum alloy 7050-T7451 was investigated. The cutting speed changes from 300m/min to 3000m/min. In the experiments, the residual stresses on the surface of specimen are detected by X-ray diffraction technique. The result shows that compressive residual stresses are generated when cutting speed is under 500 m/min. In feed and its orthogonal direction, the effect of cutting speed and feed rate on residual stresses is similar. The formation of the residual stresses can be explained by thermo-mechanical coupling effects.


2021 ◽  
Vol 39 (1B) ◽  
pp. 197-202
Author(s):  
Ghufran S. Jaber ◽  
Khawla S. Khashan ◽  
Maha J. Abbas

The effects of varying laser pulse numbers on the fabricated of ZnONPs by pulsed laser ablation in deionized water of Zn-metal are investigated. The Nd: YAG laser at energy 600mJ prepared three samples by change the laser pulse number (100, 150, and 200). The results were collected and examined using an electron scanning microscope, XRD – diffraction, and transmission electron microscope. The result revealed the colloidal spherical shape and the homogeneous composition of the ZnO NPs. The nanoparticles resulted in different concentrations and sized distributions by changing the pulse number of a laser. The average particle size and the mass concentration of particle size increase with an increasing number of laser pulses by fixed the laser energy.


Sign in / Sign up

Export Citation Format

Share Document