Experimental Study on the Development of New Corrosion Inhibitor Contained a lot of Ca(No2)2 Using Concrete Structure

2008 ◽  
Vol 385-387 ◽  
pp. 605-608
Author(s):  
Byung Chul Moon ◽  
Han Seung Lee ◽  
Young Jin Kim

The purpose of this research is to evaluate the effectiveness of nitrate as a corrosion inhibitor in mortar containing chloride. In the experiment, test specimens of mortar to which chloride and nitrite had been added, were subjected to accelerated corrosion by means of repeated drying and wetting on condition of high temperature. This study concerns the assessment of the inhibition effect of nitrite-based corrosion inhibitor using a polarization method and its influence on the chloride transport, compressive strength and setting time of concrete. From the results of the experiments, it was confirmed that the lithium, calcium nitrite corrosion inhibitor and new corrosion inhibitor over dosage 0.6 (NO2-/Cl-) molar ratio is very effective in protecting reinforcement from corrosion in mortar in which chloride ions have contained.

2014 ◽  
Vol 25 (1) ◽  
pp. 39-42
Author(s):  
Albana Jano ◽  
Alketa Lame ◽  
Efrosini Kokalari

Abstract The corrosion of metal surfaces causes huge financial damages to the industries annually, what has lead to an increase in the search for substances that can slow down or prevent corrosion rate. Green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Amino acids are attractive as corrosion inhibitors because they are nontoxic. We have used methionine as corrosion inhibitor. Materials under investigation are two kind of low allow carbon steel marked as: Steel 39, Steel 44 usually applied to concrete as reinforcing bars, and manufacture in Elbasan. The inhibition effect of methionine on the corrosion behavior of low allow steel is investigated in sulfuric acid in presence of chloride ions, in form of NaCl (H2SO4 1M + Cl- 10-3M). Potentiodynamic polarization method is used for inhibitor efficiency testing. The pitting corrosion current shows that increasing concentration of the inhibitor causes a decrease in pitting current density, and inhibition efficiency increases with increasing concentration of the inhibitors.


2021 ◽  
Vol 6 (21) ◽  
pp. 5203-5210
Author(s):  
Minjian Kong ◽  
Yan Meng ◽  
Lei Fan ◽  
Chengxian Yin ◽  
Qibin Chen ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 449 ◽  
Author(s):  
Mingjin Tang ◽  
Jianbo Li ◽  
Zhida Li ◽  
Luoping Fu ◽  
Bo Zeng ◽  
...  

In this paper, a corrosion inhibitor containing nitrogen atoms and a conjugated π bond was synthesised, and its final product synthesised by the optimal conditions of the orthogonal test results is named multi-mannich base (MBT). The corrosion inhibition effect on the N80 steel sheet of the corrosion inhibitor was evaluated in a CO2 saturated solution containing 3 wt % NaCl; the corrosion rate was 0.0446 mm/a and the corrosion inhibition rate was 90.4%. Through electrochemical and adsorption theory study, MBT is a mixed corrosion inhibitor that mainly shows cathode suppression capacity. The adsorption of MBT on the surface of the steel sheet follows the Langmuir adsorption isotherm; it can be spontaneously adsorbed on the surface of the N80 steel sheet, which has a good corrosion inhibition effect. The surface of the N80 steel sheet was microscopically characterised by atomic force microscope (AFM). It can be seen from the results that the N80 steel sheet with MBT added is significantly different from the blank control group; the surface of the steel sheet is relatively smooth, indicating that MBT forms an effective protective film on the surface of N80 steel, which inhibits the steel sheet.


2013 ◽  
Vol 675 ◽  
pp. 317-321
Author(s):  
Meng Ying Fang ◽  
Li Chun Liu ◽  
Fang Yin ◽  
Wu Di Zhang ◽  
Shi Qing Liu ◽  
...  

Using petroleum ether to extract the fermentative fluid (bio-slurry), then to get the inhibition mechanism of it, and infer which is the main component in inhibition mechanism of biogas. The conclusion found by the experiment is that fat soluble substance is better than water soluble substance in inhibition mechanism, and fat soluble substance is close to 75% biogas fermentation fluid, while water soluble substance is worst. That is to say, the main subject in inhibition mechanism is hided in the fat soluble substance.


2018 ◽  
Vol 29 (1) ◽  
pp. 48-53
Author(s):  
Manuela Gonçalves de Souza e Silva ◽  
Eliseu Aldrighi Münchow ◽  
Rafael Pino Vitti ◽  
Mário Alexandre Coelho Sinhoreti ◽  
Evandro Piva ◽  
...  

Abstract The aim of this study was to synthesize and evaluate physicochemical properties of a new salicylate derivative in experimental calcium-based root canal sealers. Two salicylate derivatives were synthesized for the transesterification reaction of methyl salicylate with two different alcohols (1,3-butylenoglicol disalicylate-BD and pentaerythritol tetrasalicylate -PT) in molar ratio 1:3 and 1:6, respectively. The products (BD and PT), were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance spectroscopy (RMN). Calcium-based experimental sealers were prepared with the same catalyst paste (60% of MTA, 39% of n-ethyl-o-toluenesulfonamide, and 1% titanium dioxide) and four different concentrations of BD and PT in the base pastes (40/0 - control, 35/5, 30/10 and 20/20) with 60% of bismuth oxide. The experimental sealers were evaluated for setting time, solubility (24 h, 7, 14 and 30 days), diametral tensile strength and Young’s Modulus. Data were analyzed by one- or two-way ANOVA with Tukey’s test (p<0.05). The addition of PT reduced the materials setting time. After 24 h the sealer 40/0 and 35/5 had higher solubility, and after 14 and 28 days the sealer 20/20 showed the lowest solubility (p<0.05). After 7 days the sealer 20/20 stabilized its solubility. The sealer 40/0 presented the highest values and the 20/20 presented the lowest values of diametral tensile strength and Young’s modulus (p<0.05). The addition of PT to calcium-based root canal sealers provides benefits to the setting time and solubility.


2018 ◽  
Vol 6 (11) ◽  
pp. 153-162
Author(s):  
Rajesh V. ◽  
E. U. B. Reddi ◽  
T. Byragi Reddy ◽  
Ch. Durga Prasad ◽  
B. Prasanna Kumar

The present study was initiated with an objective of investigating a plant extract as an effective corrosion inhibitor useful for protection of carbon steel in aqueous environment containing chloride ions. For this purpose, the leaf extract of the plant ‘Aerva lanata’ belonging to Amaranthaceae family of genus Aerva was chosen. The required optimum concentration of the extract for an effective inhibition was found to be 5 %, resulting in the inhibition efficiency of 95 % against corrosion of carbon steel in 200 ppm of NaCl solution. The extract introduced as a corrosion inhibitor was found to be effective in the pH range from 4.0 to 9.0. The extract could retain its inhibition efficiency for about an immersion period of 60 days and also up to a temperature of 333 K. The 5 % extract was found to control corrosion of carbon steel in highly aggressive medium containing 300 ppm of NaCl also. In order to maintain the protective nature, the required concentration of the extract was 2 %. From these studies, it was inferred that the Aerva lanata leaf extract exhibits good inhibitive properties for carbon steel in aqueous environment in wide ranges of pH, temperature and aggressiveness of medium.


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


2021 ◽  
Vol 15 (1) ◽  
pp. 19-26
Author(s):  
Hala B. Kaka ◽  
Raid F. Salman

Abstract Background Three-dimensional obturation of the root canal system is mandatory for a successful root canal treatment. Using a filling material with optimal properties may enable the root canal to be sealed well and therefore obtain the desired obturation. Objective To develop a new injectable paste endodontic filling material using calcium phosphate powder and a styrene–butadiene emulsion polymer. Methods The powder phase comprised an equivalent molar ratio of tetracalcium phosphate, anhydrous dicalcium phosphate, bismuth oxide, and calcium chloride. The liquid phase comprised a styrene–butadiene rubber emulsion in distilled water. The powder and the liquid were mixed to achieve a paste consistency. The paste was subjected to various tests including flow, setting time, dimensional change, solubility, and radiopacity to indicate its suitability as a root canal filling material. All these tests were conducted according to the American National Standards Institute–American Dental Association for endodontic sealing materials. After passing these tests, the paste was submitted to an injectability test. Results The material showed acceptable flowability with 19.1 ± 1.3 min setting time and 0.61 ± 0.16% shrinkage after 30 days of storage. We found the highest solubility at 24 h (6.62 ± 0.58%), then the solubility decreased to 1.09 ± 0.08% within 3 days. The material was more radiopaque than a 3 mm step on an aluminum wedge. Furthermore, the material showed good injectability of 93.67 ± 1.80%. Conclusions The calcium phosphate powder in styrene–butadiene emulsion met basic requirements for a root canal filling material with promising properties.


Sign in / Sign up

Export Citation Format

Share Document