A Study on Statistical Analysis of Si-Wafer Polishing Process for the Optimum Polishing Condition

2008 ◽  
Vol 389-390 ◽  
pp. 493-497 ◽  
Author(s):  
Sung Chul Hwang ◽  
Jong Koo Won ◽  
Jung Taik Lee ◽  
Eun Sang Lee

As the level of Si-wafer surface directly affects device line-width capability, process latitude, yield, and throughput in fabrication of microchips, it needs to have ultra precision surface and flatness. Polishing is one of the important processing having influence on the surface roughness in manufacturing of Si-wafers. The surface roughness in wafer polishing is mainly affected by the many process parameters. For decreasing the surface roughness, the control of polishing parameters is very important. In this paper, the optimum condition selection of ultra precision wafer polishing and the effect of polishing parameters on the surface roughness were evaluated by the statistical analysis of the process parameters.

2014 ◽  
Vol 14 (3) ◽  
pp. 171-175 ◽  
Author(s):  
Yashvir Singh ◽  
Amneesh Singla ◽  
Ajay Kumar

AbstractThis paper presents a statistical analysis of process parameters for surface roughness in drilling of Al/Al2O3p metal matrix composite. The experimental studies were conducted under varying spindle speed, feed rate, point angle of drill. The settings of drilling parameters were determined by using Taguchi experimental design method. The level of importance of the drilling parameters is determined by using analysis of variance. The optimum drilling parameter combination was obtained by using the analysis of signal-to-noise ratio. Through statistical analysis of response variables and signal-to-noise ratios, the determined significant factors are depth of cut and drill point angle with the contributions of 87% and 12% respectively, whereas the cutting speed is insignificant contributing by 1% only. Confirmation tests verified that the selected optimal combination of process parameter through Taguchi design was able to achieve desired surface roughness.


2009 ◽  
Vol 626-627 ◽  
pp. 147-152
Author(s):  
Jong Koo Won ◽  
Jung Taik Lee ◽  
Eun Sang Lee

Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafer. This study will report the evaluation on abrasion of wafer according to processing time; machining speed and pressure which have major influence on the abrasion of Si wafer polishing, for this, this study design the head unit and analysis head unit. After that, apply to experiment. It is possible to evaluation of wafer abrasion by load cell and infrared temperature sensor. The evaluation of abrasion according to processing condition is selected to use result data that measure a pressure, machining speed, and the processing time. This result is appeared by abrasion in machining condition. Through that, the study cans evaluation a wafer abrasion in machining. It is important to obtain mirror-like wafer surface.


2009 ◽  
Vol 76-78 ◽  
pp. 381-386 ◽  
Author(s):  
Eun Sang Lee ◽  
Jong Koo Won ◽  
Jung Taik Lee ◽  
Hon Jong Choi

It is important to obtain the optimal condition in wafer polishing processing. Polishing is one of the most important methods in manufacturing of Si wafers and in thinning of completed device wafer. This study will report the evaluation on abrasion of wafer according to processing time; machining speed and pressure which have the major influence on the abrasion of Si wafer polishing, for this, this study design the head unit and analysis head unit. After that, this study applies to experiment. The evaluation of abrasion according to processing condition is selected to use result data that measure a pressure, machining speed, and the processing time. This result is appeared by machining condition. Through that, the study can evaluate the abrasion characteristic of wafer in machining.


2008 ◽  
Vol 53-54 ◽  
pp. 173-178
Author(s):  
Ju Long Yuan ◽  
Yi Yang ◽  
Zhi Wei Wang ◽  
Dong Qiang Yu ◽  
Miao Qian ◽  
...  

This work aims to obtain fine surface of silicon wafer during precision and ultra precision machining, and presents a new method called semibonded abrasive machining. A semibonded abrasive grinding plate is used in the semibonded abrasive machining. Abrasive particle of 1000# Green SiC and bond named SSB are adopted in the manufacture of the plate. Four plates with different concentration of bond which are 1.5%, 2.5%, 3.5%, 4.5% respectively are made. The paper studies the effect of concentration of bond, the control parameters which include the lapping time, the load, and the rotating velocity of the plate on the surface roughness. Experimental results indicate each plate with different concentration of bond can obtain fine surface roughness. When the load or the rotating velocity increases, there is little effect on the surface roughness, but the material removal rate increases correspondingly. The initial roughness of the silicon wafer surface lapping by the plate could be improved from Ra 0.2μm to Ra 0.02μm in 9 min.


2012 ◽  
Vol 581-582 ◽  
pp. 790-793
Author(s):  
Xi Hui Zhang ◽  
Gui Xiang Wang

Several chelating agents in silicon polishing slurries were studied about their effects on copper adhesion to the surface of silicon wafer. The copper contamination level on the Si wafer surface was measured with GFAAS. The results indicate that PAA and HEDP for acid slurries can reduce 80% copper contamination with respect to the situation of without chelating agent. EDTA, the most common chelating agent for alkaline slurries, has no predominant compared with FA/O and AEEA. The copper contamination on Si wafer surface can reduce nearly 50% by adding EDTA while the addition of FA/O or AEEA in the same concentration for alkaline slurries can reach more than 70% reduction of copper contamination level.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Nitin D. Misal ◽  
Mudigonda Sadaiah

The present work is focused on estimating the optimal machining parameters required for photochemical machining (PCM) of an Inconel 718 and effects of these parameters on surface topology. An experimental analysis was carried out to identify optimal values of parameters using ferric chloride (FeCl3) as an etchant. The parameters considered in this analysis are concentration of etchant, etching time, and etchant temperature. The experimental analysis shows that etching performance as well as surface topology improved by appropriate selection of etching process parameters. Temperature of the etchant found to be dominant parameter in the PCM of Inconel 718 for surface roughness. At optimal etching conditions, surface roughness was found to be 0.201 μm.


Mechanik ◽  
2017 ◽  
Vol 90 (3) ◽  
pp. 186-187 ◽  
Author(s):  
Rafał Świercz

The article presents statistical analysis of results experimental investigation of EDM process with graphene flakes in dielectric. The relations between surface roughness and process parameters have been determined.


2015 ◽  
Vol 1115 ◽  
pp. 29-32
Author(s):  
M.A. Safaruddin ◽  
S.F.M. Shahar ◽  
I.H. Jaafar

Fabrication of silicon (Si) wafer microfilters via focus ion beam (FIB) sputtering (milling/drilling) is planned. However, due to limitations of FIB sputtering, the wafer has to be initially thinned to a certain thickness to ensure that micron-scale through holes can be successfully manufactured. This paper reports on thinning of a silicon wafer via wet chemical etching using 15, 20, and 25% w/w potassium hydroxide (KOH) at 3 different etchant temperatures (80oC, 90oC, and 100oC). The target is to achieve 100 μm with the lowest time taken and wafer surface roughness after etching. From the experiments conducted, it was determined that KOH solution at 15% w/w concentration at 100oC produced the best result with an etch rate of 5.43 μm/min, surface roughness (Ra) of 0.12μm and thickness of 123.00μm.


Sign in / Sign up

Export Citation Format

Share Document