Water Absorption and Mechanical Properties of Cements Based on Poly (Methyl Methacrylate) (PMMA) as Function of Hydroxyapatite (HA) Content

2008 ◽  
Vol 396-398 ◽  
pp. 493-496
Author(s):  
D. Ionita ◽  
G. Tihan ◽  
A.T. Marques

The purpose of this study is the obtaining of different orthopedic materials and chemical and mechanical characterization. The chemical tests used were setting time, water absorption and from the point of view of mechanical properties the Young modulus, compressive strength, and maximum strength. Also, the surface of orthopedic bioceramics materials was characterized by porosity test.

Author(s):  
Vu-An Tran

This research investigates the physical and mechanical properties of mortar incorporating fly ash (FA), which is by-product of Duyen Hai thermal power plant. Six mixtures of mortar are produced with FA at level of 0%, 10%, 20%, 30%, 40%, and 50% (by volume) as cement replacement and at water-to-binder (W/B) of 0.5. The flow, density, compressive strength, flexural strength, and water absorption tests are made under relevant standard in this study. The results have shown that the higher FA content increases the flow of mortar but significantly decreases the density of mixtures. The water absorption and setting time increases as the samples incorporating FA. Compressive strength of specimen with 10% FA is approximately equal to control specimen at the 91-day age. The flexural strength of specimen ranges from 7.97 MPa to 8.94 MPa at the 91-day age with the best result for samples containing 10% and 20% FA.


2018 ◽  
Vol 83 (1) ◽  
pp. 75-91 ◽  
Author(s):  
Fathie Kundie ◽  
Che Azhari ◽  
Zainal Ahmad

This research investigated the effects of alumina (Al2O3) micro- and nano-particles on poly(methyl methacrylate) (PMMA) denture base. Al2O3 was surface treated using (3-methacryloxypropyl)trimethoxysilane (?-MPS), added to methyl methacrylate (MMA), and mixed with PMMA powder. The filler volume fractions in the micro-composites were 0.5, 1, 2, 5 and 7 wt. %, whereas those in the nano-composites were 0.13, 0.25, 0.5, 1, 2 and 5 wt. %. The treated fillers were examined using Fourier transform infrared spectroscopy (FTIR). The influence of filler size and loading on mechanical properties was studied using fracture toughness and flexural tests. The thermal stability of the PMMA/Al2O3 composites was investigated using thermogravimetric analysis (TGA). In addition, the water absorption and solubility characteristic of the prepared composites was also investigated. The FTIR spectra showed new absorption bands, indicating the occurrence of surface modifications. Both micro- and nanoscale particles showed increased fracture toughness. The maximum value of 2.02 MPa?m1/2 was achieved with the addition of 0.5 wt. % nano-Al2O3, which accounts for a 39 % increase. In contrast to the flexural strength, the flexural modulus improved with increasing filler content. The micro-composites showed higher thermal stability than nano-composites. The water absorption and solubility of the prepared composites were slightly higher than those of the control. The use of low concentrations of Al2O3 nanoparticles may be of considerable interest in future studies to improve the mechanical properties of PMMA denture base.


MRS Advances ◽  
2018 ◽  
Vol 3 (63) ◽  
pp. 3763-3768
Author(s):  
Virginia Campos-Sanabria ◽  
María T. Hernández-Sierra ◽  
Micael G. Bravo-Sánchez ◽  
Luis D. Aguilera-Camacho ◽  
J. S. García-Miranda ◽  
...  

ABSTRACTPoly (methyl methacrylate)/hydroxyapatite (PMMA/HAp) nanocomposites with HAp nanoparticles content of 12 wt.% were obtained by free-radical polymerization synthesis. Three different concentrations of benzoyl peroxide (PBO) of 3, 6, and 12 wt.% were studied. The results showed that the concentration of PBO has an effect on the performance of composites. In particular, the nanocomposite with the highest concentration of PBO presented the best mechanical and tribological behavior, as well as the lowest values of water absorption and porosity percent.


2021 ◽  
Vol 33 (11) ◽  
pp. 2774-2780
Author(s):  
G. Priya ◽  
N. Vijayakumari

Present work based on the development and incorporation of zinc-cerium substituted hydroxyapatite (ZCHA) nanoparticles into the host material of the dual polymer blend of poly(vinyl pyrrolidone) (PVD)-poly(methyl methacrylate) (PMMA). Numerous characterization techniques such as FTIR, XRD and SEM-EDX have been used in morphological and structural investigations of prepared nanoparticles and ZCHA reinforced PMMA-PVD biocomposites. The mechanical properties of ZCHA/PVD-PMMA biocomposites, like compressive strength was evaluated. To examine the biocompatibility of biocomposites, hemocompatibility experiments have been carried out. The antimicrobial activities of biocomposites toward Gram-positive and Gram-negative bacteria have also been tested and the cytotoxic existence of biocomposites has been evaluated using the MTT assay experiment. The developed ZCHA/PVD-PMMA biocomposites is suggested to provide the finest medicinal benefits in the application of biomaterials.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


2020 ◽  
Author(s):  
Changtian Gong ◽  
Shuo Fang ◽  
Kezhou Xia ◽  
Jingteng Chen ◽  
Liangyu Guo ◽  
...  

Abstract Incorporating bioactive substances into synthetic bioceramic scaffolds is challenging. In this work, oxygen-carboxymethyl chitosan (O-CMC), a natural biopolymer that is nontoxic, biodegradable and biocompatible, was introduced into magnesium potassium phosphate cement (K-struvite) to enhance its mechanical properties and cytocompatibility. This study aimed to develop O-CMC/magnesium potassium phosphate composite bone cement (OMPC), thereby combining the optimum bioactivity of O-CMC with the extraordinary self-setting properties and mechanical intensity of the K-struvite. Our results indicated that O-CMC incorporation increased the compressive strength and setting time of K-struvite and decreased its porosity and pH value. Furthermore, OMPC scaffolds remarkably improved the proliferation, adhesion and osteogenesis related differentiation of MC3T3-E1 cells. Therefore, O-CMC introduced suitable physicochemical properties to K-struvite and enhanced its cytocompatibility for use in bone regeneration.


2012 ◽  
Vol 43 (8) ◽  
pp. 3114-3119 ◽  
Author(s):  
Niranjan Patra ◽  
Marco Salerno ◽  
P. Davide Cozzoli ◽  
Alberto C. Barone ◽  
Luca Ceseracciu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document