Methods for Prevention of Ignition during Machining of Magnesium Alloys

2010 ◽  
Vol 447-448 ◽  
pp. 150-154 ◽  
Author(s):  
Jun Zhan Hou ◽  
Wei Zhou ◽  
Ning Zhao

Magnesium alloys have been increasingly used in automotive and aerospace components and in portable microelectronic devices due to their “ultralightness” and high specific strength. Machining is an important method used to process magnesium alloys. The advantages of machining over other processing methods such as die casting include reduction in power consumption and excellent surface finish. However, the ignition of chips presents a dangerous problem during machining. This problem has attracted considerable research interests. Though coolants can be used effectively to prevent ignition, the pollution of environment and reclamation of chips can not be resolved easily. Therefore, one better approach is to control the machining parameters for minimizing ignition hazard of magnesium alloy chips during dry machining. A systematic study was conducted for a few different magnesium alloys (including AM50A and AZ91D) to understand effect of cutting parameters (cutting speed, feedrate and depth of cut) on ignition of chips during face milling. It is interesting to find that for any fixed cut depth ignition in the forms of sparks, flares or ring of fire occurs only in the moderate cutting speeds and feedrates and can thus be easily prevented by adopting either higher or lower cutting speeds or feedrates. Chips produced in different machining conditions were collected and their morphology was analyzed to understand mechanisms of ignition.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2070 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Monika Kulisz ◽  
Mariusz Kłonica ◽  
Jakub Matuszak

This paper set out to investigate the effect of cutting speed vc and trochoidal step str modification on selected machinability parameters (the cutting force components and vibration). In addition, for a more detailed analysis, selected surface roughness parameters were investigated. The research was carried out for two grades of magnesium alloys—AZ91D and AZ31—and aimed to determine stable machining parameters and to investigate the dynamics of the milling process, i.e., the resulting change in the cutting force components and in vibration. The tests were performed for the specified range of cutting parameters: vc = 400–1200 m/min and str = 5–30%. The results demonstrate a significant effect of cutting data modification on the parameter under scrutiny—the increase in vc resulted in the reduction of the cutting force components and the displacement and level of vibration recorded in tests. Selected cutting parameters were modelled by means of Statistica Artificial Neural Networks (Radial Basis Function and Multilayered Perceptron), which, furthermore, confirmed the suitability of neural networks as a tool for prediction of the cutting force and vibration in milling of magnesium alloys.


2014 ◽  
Vol 875-877 ◽  
pp. 652-656
Author(s):  
Issam Hanafi ◽  
Khamlichi Abdellatif ◽  
Francisco Mata Cabrera

The machining parameters for turning of PEEK CF30 using TiN coated tools under dry conditions have been optimized by using Non dominated Sorting Genetic Algorithm (NSGA-II), a non dominated solution set is obtained. The objectives considered are the minimisation of machining force thereby minimising specific cutting pressure as function of the main operating parameters. The results indicated that the minimal cutting parameters are preferred for reducing the machining force, and the minimal cutting speed, medium depth of cut and high feed rate are recommended for minimal specific cutting machining. As per the requirement, the manufacturing engineer should select the proper cutting parameters.


2020 ◽  
Vol 65 (1) ◽  
pp. 10-26
Author(s):  
Septi Boucherit ◽  
Sofiane Berkani ◽  
Mohamed Athmane Yallese ◽  
Riad Khettabi ◽  
Tarek Mabrouki

In the current paper, cutting parameters during turning of AISI 304 Austenitic Stainless Steel are studied and optimized using Response Surface Methodology (RSM) and the desirability approach. The cutting tool inserts used in this work were the CVD coated carbide. The cutting speed (vc), the feed rate (f) and the depth of cut (ap) were the main machining parameters considered in this study. The effects of these parameters on the surface roughness (Ra), cutting force (Fc), the specific cutting force (Kc), cutting power (Pc) and the Material Removal Rate (MRR) were analyzed by ANOVA analysis.The results showed that f is the most important parameter that influences Ra with a contribution of 89.69 %, while ap was identified as the most significant parameter (46.46%) influence the Fc followed by f (39.04%). Kc is more influenced by f (38.47%) followed by ap (16.43%) and Vc (7.89%). However, Pc is more influenced by Vc (39.32%) followed by ap (27.50%) and f (23.18%).The Quadratic mathematical models, obtained by the RSM, presenting the evolution of Ra, Fc, Kc and Pc based on (vc, f, and ap) were presented. A comparison between experimental and predicted values presents good agreements with the models found.Optimization of the machining parameters to achieve the maximum MRR and better Ra was carried out by a desirability function. The results showed that the optimal parameters for maximal MRR and best Ra were found as (vc = 350 m/min, f = 0.088 mm/rev, and ap = 0.9 mm).


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 927 ◽  
Author(s):  
Irene Del Sol ◽  
Asuncion Rivero ◽  
Antonio J. Gamez

Nowadays, the industry looks for sustainable processes to ensure a more environmentally friendly production. For that reason, more and more aeronautical companies are replacing chemical milling in the manufacture of skin panels and thin plates components. This is a challenging operation that requires meeting tight dimensional tolerances and differs from a rigid body machining due to the low stiffness of the part. In order to fill the gap of literature research on this field, this work proposes an experimental study of the effect of the depth of cut, the feed rate and the cutting speed on the quality characteristics of the machined parts and on the cutting forces produced during the process. Whereas surface roughness values meet the specifications for all the machining conditions, an appropriate cutting parameters selection is likely to lead to a reduction of the final thickness deviation by up to 40% and the average cutting forces by up to a 20%, which consequently eases the clamping system and reduces machine consumption. Finally, an experimental model to control the process quality based on monitoring the machine power consumption is proposed.


2020 ◽  
Vol 896 ◽  
pp. 299-304
Author(s):  
Dumitru Panduru ◽  
Emil Nicusor Patru ◽  
Nicolae Craciunoiu ◽  
Marin Bica

Pure titanium and its alloys are widely used in automotive industry, due to their high specific strength (strength/density) and excellent corrosion resistance, despite of their high cost. From point of view of machining, turning experiments of the pure titanium involve few input parameters (cutting speed, feed rate or depth of cut) and investigation of their influence on the response parameters of the cutting process (temperature in this case). Objectives of this study are to find the optimal combination of the input parameters, so that the temperature in turning of pure titanium to be minimum. In order to use a small number of experiments, two major tools, signal-to-noise (one of the three characteristic: nominal is the best, smaller the better or larger is better) and orthogonal array as statistical method can be used. For this study, a L9 (34) orthogonal array was considered adequate, so nine experiments was conducted using each factor (speed, feed and depth of cut) at three different levels.


2017 ◽  
Vol 261 ◽  
pp. 321-327 ◽  
Author(s):  
Abidin Şahinoğlu ◽  
Şener Karabulut ◽  
Abdulkadir Güllü

In this study, the relationship between the spindle vibration and surface roughness was investigated and the effect of the cutting parameters on surface roughness and spindle vibration during the machining of Aluminum alloy 7075 (Al 7075) were determined. Experimental studies have been carried out on a CNC turning machine using coated cemented carbide cutting tools under dry cutting environment. L64 full factorial design of experiments was used to investigate the optimal machining parameters for spindle vibration and surface roughness. The influences of machining parameters on vibration and surface roughness were evaluated by using analysis of variance (ANOVA) and main effect plots. The results revealed that the feed rate was the most effective cutting parameters on spindle vibration and surface roughness. The machine tool vibration amplitude and surface roughness values were significantly increased with increasing cutting feed. The depth of cut and cutting speed have the least effect on the spindle vibration and indicated an insignificant effect on surface roughness. Mathematical equations were developed to predict the vibration and surface roughness values using the regression analysis.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
M. Nurhaniza ◽  
M. K. A. M. Ariffin ◽  
F. Mustapha ◽  
B. T. H. T. Baharudin

The quality of the machining is measured from surface finished and it is considered as the most important aspect in composite machining. An appropriate and optimum machining parameters setting is crucial during machining operation in order to enhance the surface quality. The objective of this research is to analyze the effect of machining parameters on the surface quality of CFRP-Aluminium in CNC end milling operation with PCD tool. The milling parameters evaluated are spindle speed, feed rate, and depth of cut. The L9 Taguchi orthogonal arrays, signal-to-noise (S/N) ratio, and analysis of variance (ANOVA) are employed to analyze the effect of these cutting parameters. The analysis of the results indicates that the optimal cutting parameters combination for good surface finish is high cutting speed, low feed rate, and low depth of cut.


2011 ◽  
Vol 189-193 ◽  
pp. 3142-3147 ◽  
Author(s):  
Dong Qiang Gao ◽  
Zhong Yan Li ◽  
Zhi Yun Mao

A model of stress and temperature field is established on nickel-based alloy cutting by finite element modeling and dynamic numerical simulating, and then combining high-speed machining test and orthogonality analysis method, the influence law of cutting parameters on the cutting force and tool wear has been researched, and the tool life and cutting force prediction model based on cutting parameters has been obtained. Finally, by genetic algorithm method cutting parameters are selected reasonably and optimized. The result shows that the bonding wear is main tool wear, and the influence of cutting speed on cutting force is smaller than feed per tooth and axial depth of cut.


2013 ◽  
Vol 685 ◽  
pp. 57-62
Author(s):  
Seyyed Pedram Shahebrahimi ◽  
Abdolrahman Dadvand

One of the most important issues in turning operations is to choose suitable parameters in order to achieve a desired surface finish. The surface finish in machining operation depends on many parameters such as workpiece material, tool material, tool coating, machining parameters, etc. The purpose of this research is to focus on the analysis of optimum cutting parameters to get the lowest surface roughness in turning Titanium alloy Ti-6Al-4V with the insert with the standard code DNMG 110404 under dry cutting condition, by the Taguchi method. The turning parameters are evaluated as cutting speed of 14, 20 and 28 m/min, feed rate of 0.12, 0.14 and 0.16 mm/rev, depth of cut of 0.3, 0.6 and 1 mm, each at three levels. The Experiment was designed using the Taguchi method and 9 experiments were conducted by this process. The results are analyzed using analysis of variance method (ANOVA). The results of analysis show that the depth of cut has a significant role to play in producing lower surface roughness that is about 63.33% followed by feed rate about 30.25%, and cutting speed has less contribution on the surface roughness. Also it was realized that with the use of the confirmation test, the surface roughness improved by 227% from its initial state.


Sign in / Sign up

Export Citation Format

Share Document