Design of High-SNR CMOS Interface Circuit for Micro-Machined Gyroscope

2011 ◽  
Vol 483 ◽  
pp. 508-512
Author(s):  
Hai Xi Lu ◽  
Yong Ping Xu ◽  
Shou Rong Wang

A CMOS integrated interface circuit for micro-machined gyroscope containing a novel front-end and 6th-order Sigma-delta modulator is presented in this paper. To reduce the noise coming from the sensor and circuit, the front-end is accomplished by a switched-capacitor architecture, which constructed by a high-gain fully-differential amplifier and improved by chopper-stabilization technique, and work under a designed charging and sampling logic scheme. A cascade 6th-order Sigma-Delta modulator is designed to get high resolution, reduce quantized error and suppress the instability brought by high-order modulator. With the cascade structure and 16-bit resolution 32 OSR, the modulator outputs 3-bits digital stream. The whole circuit is designed with AMS technique and 3.3V power consumption. The simulation result presents that the interface circuit performs a appointed under a low-noise design specification in signal band, and the SNR of the circuit achieves remarkable value of 106dB.

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1041
Author(s):  
Xiangyu Li ◽  
Jianping Hu ◽  
Xiaowei Liu

The tunneling magnetoresistance micro-sensors (TMR) developed by magnetic multilayer material has many advantages, such as high sensitivity, high frequency response, and good reliability. It is widely used in military and civil fields. This work presents a high-performance interface circuit for TMR sensors. Because of the nonlinearity of signal conversion between sensitive structure and interface circuit in feedback loop and forward path, large harmonic distortion occurs in output signal spectrum, which greatly leads to the reduction of SNDR (signal noise distortion rate). In this paper, we analyzed the main source of harmonic distortion in closed-loop detection circuit and establish an accurate harmonic distortion model in TMR micro-sensors system. Some factors are considered, including non-linear gain of operational amplifier unit, effective gain bandwidth, conversion speed, nonlinearity of analog transmission gate, and nonlinearity of polycrystalline capacitance in high-order sigma-delta system. We optimized the CMOS switch and first-stage integrator in the switched-capacitor circuit. The harmonic distortion parameter is optimally designed in the TMR sensors system, aiming at the mismatch of misalignment of front-end system, non-linearity of quantizer, non-linearity of capacitor, and non-linearity of analog switch. The digital output is attained by the interface circuit based on a low-noise front-end interface circuit and a third-order sigma-delta modulator. The digital interface circuit is implemented by 0.35μm CMOS (complementary metal oxide semiconductor) technology. The high-performance digital TMR sensors system is implemented by double chip integration and the active interface circuit area is about 3.2 × 2 mm. The TMR sensors system consumes 20 mW at a single 5 V supply voltage. The TMR sensors system can achieve a linearity of 0.3% at full scale range (±105 nT) and a resolution of 0.25 nT/Hz1/2(@1Hz).


Author(s):  
Anqi Chen ◽  
Xiangyu Li ◽  
Yan Li ◽  
Xinpeng Di ◽  
Xiaowei Liu

The tunneling magnetoresistance (TMR) with high-resolution digital output is widely used in military and civil fields. In this work we proposed a low-noise read-out circuit and a four-order fully differential sigma-delta modulator for TMR sensors. In the read-out circuit, we used symmetrical cascade for good matching. We used correlated double sampling (CDS) technique to improve the conversion accuracy of the modulator. In switched capacitor circuits we used time-division multiplexing to suppress charge injection and clock feedthrough. The high-precision application specific integrated circuit (ASIC) chip was fabricated by a 0.35 [Formula: see text]m CMOS process from Shanghai Huahong foundry. The TMR sensor was placed in an environment of three-layer magnetic shielding for test. The active area of the ASIC is only about [Formula: see text]. At a sampling frequency of 20 kHz, the TMR magnetometer consumes 77 mW from a single 5 V supply; the sigma-delta modulator for TMR can achieve an average noise floor of −141 dBV. The magnetometer works at a full scale (FS) of [Formula: see text], it can achieve a nonlinearity of 0.2% FS and a resolution of 0.15 nT/Hz[Formula: see text] over a signal bandwidth.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1157 ◽  
Author(s):  
Robert Chebli ◽  
Mohamed Ali ◽  
Mohamad Sawan

We present in this paper a fully integrated low-noise high common-mode rejection ratio (CMRR) logarithmic programmable gain amplifier (LPGA) and chopped LPGA circuits for EEG acquisition systems. The proposed LPGA is based on a rail-to-rail true logarithmic amplifier (TLA) stage. The high CMRR achieved in this work is a result of cascading three amplification stages to construct the LPGA in addition to the lower common-mode gain of the proposed logarithmic amplification topology. In addition, the 1 / f noise and the inherent DC offset voltage of the input transistors are reduced using a chopper stabilization technique. The CMOS 180 nm standard technology is used to implement the circuits. Experimental results for the integrated LPGA show a CMRR of 140 dB, a differential gain of 37 dB, an input-referred noise of 0.754 μ Vrms, a 189 μ W power consumption from 1.8 V power supply and occupies an active area of 0.4 mm 2 .


2013 ◽  
Vol 6 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Andrea Malignaggi ◽  
Amin Hamidian ◽  
Georg Boeck

The present paper presents a fully differential 60 GHz four stages low-noise amplifier for wireless applications. The amplifier has been optimized for low-noise, high-gain, and low-power consumption, and implemented in a 90 nm low-power CMOS technology. Matching and common-mode rejection networks have been realized using shielded coplanar transmission lines. The amplifier achieves a peak small-signal gain of 21.3 dB and an average noise figure of 5.4 dB along with power consumption of 30 mW and occupying only 0.38 mm2pads included. The detailed design procedure and the achieved measurement results are presented in this work.


2013 ◽  
Vol 284-287 ◽  
pp. 2647-2651
Author(s):  
Zhe Yang Huang ◽  
Che Cheng Huang ◽  
Jung Mao Lin ◽  
Chung Chih Hung

This paper presents a wideband wireless receiver front-end for 3.1-5.0GHz band group-1 (BG-1) WiMedia application. The front-end circuits are designed in 0.18um standard CMOS process. The experimental results show the maximum conversion power gain is 45.5dB; minimum noise figure is 2.9dB. Input return loss is lower than -9.3dB and output return loss is lower than -6.8dB. The maximum LO conversion power is 0dBm. 3dB working frequency is 1.9GHz (3.1GHz-5.0GHz) Total power consumption is 24.3mW including LNA, mixer and all buffers. Total chip area is 1.27mm2 including dummy and pads.


Sign in / Sign up

Export Citation Format

Share Document