Fracture Behavior and Mechanical Properties of Bamboo Fiber Reinforced Concrete

2011 ◽  
Vol 488-489 ◽  
pp. 214-217
Author(s):  
Masakazu Terai ◽  
Koichi Minami

Fiber reinforced concrete is superior to plain concrete in toughness, which is the energy absorption at fracture. This study is intended to use fibers extracted from bamboo for tensile reinforcement of concrete. Some experiments were carried out to explore the possibility of bamboo fiber reinforced concrete. As a result, the compressive strength of concrete with 1-2% bamboo fiber is little different from the case without reinforcement. On the other, the splitting tensile and the flexural strength significantly increased with an increased volume fraction of fibers. The strength of bamboo fiber reinforced concrete increased with increasing fiber content as a result of fiber bridging.

2014 ◽  
Vol 915-916 ◽  
pp. 784-787
Author(s):  
Yan Lv

Based on the mechanical properties experiment of the glass fiber reinforced concrete with 0%0.6%0.8% and 1% glass fiber volume fraction, the mechanics property such as tensile strength, compressive strength, flexural strength and flexural elasticity modulus are analyzed and compared with the plain concrete when the kinds of fiber content changes. The research results show that the effect of tensile strength and flexural strength can be improved to some extent, which also can serve as a reference or basis for further improvement and development the theory and application of the glass fiber reinforced concrete.


2014 ◽  
Vol 662 ◽  
pp. 24-28 ◽  
Author(s):  
Xi Du ◽  
You Liang Chen ◽  
Yu Chen Li ◽  
Da Xiang Nie ◽  
Ji Huang

With cooling tests on polypropylene fiber reinforced concrete and plain concrete that were initially subjected to different heating temperatures, the change of mechanical properties including mass loss, uniaxial compressive strength and microstructure were analyzed. The results show that the compressive strength of concrete tend to decrease with an increase in temperature. After experiencing high temperatures, the internal fibers of the polypropylene fiber reinforced concrete melted and left a large number of voids in it, thereby deteriorating the mechanical properties of concrete.


2017 ◽  
Vol 744 ◽  
pp. 3-7 ◽  
Author(s):  
Asif Jalal ◽  
Nasir Shafiq ◽  
Ehsan Nikbakht ◽  
Rabinder Kumar ◽  
Muhammad Zahid

This study focuses on the study of the mechanical behavior of non-metallic hybrid Basalt-PVA fiber reinforced concrete. Total five mixes were investigated with one control plain concrete and four with fiber volume fraction of 0.3%, 0.6%, 0.9% and 1.2%. Basalt and PVA were used in same quantity. Fiber decreased workability, therefore superplasticizer was used to maintain workability constant. The increase in superplasticizer and fiber content decreased compression, split tensile and flexure strengths because of formation of big size pores. Whereas fiber enhanced the post peak load zone in the load-deflection curve. Fiber improved the bridging action by increasing energy absorption. Fiber vanished the brittle behavior of high strength concrete and increased first crack toughness, flexure toughness and also maximum deflection. 0.3% volume fraction of fiber was found to be optimum with the negligible decrease in compression, split tensile and flexure strength while caused the considerable increase in first crack toughness, flexure toughness, and maximum deflection.


Concrete is the most widely used product in the construction sector mainly because of its properties and its capability to be moulded to any size. Plain concrete has low tensile strength and forms internal micro cracks. It has been proven that with the addition of natural fibers and synthetic fibers in concrete, it helps in the durability and functionality of structure. The steel fibers are added to the concrete in very low volume doses and it has been effective in decreasing the plastic shrinkage in cracking and also acting as a crack arrestor. In this journal, experimental analysis on steel fiber reinforced concrete is done on M30 and M50 mix with 0.5%, 1%, 1.5% and 2% volume fraction of steel fiber content and is compared with samples of 0% steel fiber content and these samples are investigated on their compressive, split tensile and flexural strengths.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 445
Author(s):  
José Valdez Aguilar ◽  
César A. Juárez-Alvarado ◽  
José M. Mendoza-Rangel ◽  
Bernardo T. Terán-Torres

Concrete barely possesses tensile strength, and it is susceptible to cracking, which leads to a reduction of its service life. Consequently, it is significant to find a complementary material that helps alleviate these drawbacks. The aim of this research was to determine analytically and experimentally the effect of the addition of the steel fibers on the performance of the post-cracking stage on fiber-reinforced concrete, by studying four notch-to-depth ratios of 0, 0.08, 0.16, and 0.33. This was evaluated through 72 bending tests, using plain concrete (control) and fiber-reinforced concrete with volume fibers of 0.25% and 0.50%. Results showed that the specimens with a notch-to-depth ratio up to 0.33 are capable of attaining a hardening behavior. The study concludes that the increase in the dosage leads to an improvement in the residual performance, even though an increase in the notch-to-depth ratio has also occurred.


2010 ◽  
Vol 168-170 ◽  
pp. 2037-2043
Author(s):  
Yin Gu ◽  
Wei Dong Zhuo ◽  
Yu Ting Qiu

This paper proposes a concept of layered fiber reinforced concrete (LFRC) beam. In the concept of a LFRC beam, low-modulus fiber and high-modulus fiber are randomly dispersed and uniformly distributed into the concrete matries of the compression and tension zones, respectively. The static behaviors of LFRC beam are investigated from both experimental and numerical aspects. Four-point bending tests are performed on two simply supported T-shaped LFRC beam specimens and an ordinary T-shaped RC beam specimen with large scales. Comparison between the testing results of LFRC and RC beam specimens shows that the initial cracking load, flexural toughness and post-yielding stiffness of a LFRC beam can be significantly improved, but the ultimate loads are nearly without change. Numerical simulations are also carried out to investigate the static behaviors of the LFRC beam specimens. It is found that the simulation results are agreed well with that of tests. Further numerical parameter analysis for the LFRC beam specimens is conducted. The effects of high-modulus fiber volume fraction on the static behaviors of LFRC beams are studied. The research results show that the additions of high-modulus fibers have little effect on the initial stiffness, yielding loads and ultimate loads of LFRC beams; both the load and displacement at the initial cracking point increase linearly with the increasing volume fraction of the high-modulus fiber, but both the yielding displacement and ultimate displacement decrease linearly with the increasing volume fraction of the high-modulus fiber.


2021 ◽  
Vol 1046 ◽  
pp. 1-7
Author(s):  
Manjunath V. Bhogone ◽  
Kolluru V.L. Subramaniam

The fracture response of macro polypropylene fiber reinforced concrete (PPFRC) and hybrid blend of macro and micro polypropylene fiber reinforced concrete (HyFRC) are evaluated at 1, 3, 7 and 28 days. There is an improvement in the early-age fracture response of HyFRC compared to PPFRC. The changing cohesive stress-crack separation relationship produced by ageing of the concrete matrix is determined from the fracture test responses. An improved early-age cohesive stress response is obtained from the hybrid blend containing micro and macro fibers. The hybrid fiber blend also has a higher tensile strength at early age when compared to an identical volume fraction of macro polypropylene fibers.


2011 ◽  
Vol 368-373 ◽  
pp. 357-360
Author(s):  
Lei Jiang ◽  
Di Tao Niu ◽  
Min Bai

Based on the fast freeze-thaw test in 3.5% NaCl solution, the frost resistance of steel fiber reinforced concrete (SFRC) was studied in this paper. On the basis of scanning electron microscope (SEM) and mercury intrusion method, the microstructure and pore structure of SFRC was analysed. The reinforced mechanism of SFRC under the cooperation of freeze-thaw and NaCl solution was discussed. The test results show that adding appropriate amount of steel fibers into concrete can reduce the pore porosity and improve the compactness of concrete. The effects of steel fiber with proper volume fraction can inhibit the peeling of the concrete and reduce its damage rate. The volume of steel fiber on the frost-resisting property of SFRC is obvious.


2006 ◽  
Vol 33 (6) ◽  
pp. 726-734 ◽  
Author(s):  
Fariborz Majdzadeh ◽  
Sayed Mohamad Soleimani ◽  
Nemkumar Banthia

The purpose of this study was to investigate the influence of fiber reinforcement on the shear capacity of reinforced concrete (RC) beams. Both steel and synthetic fibers at variable volume fractions were investigated. Two series of tests were performed: structural tests, where RC beams were tested to failure under an applied four-point load; and materials tests, where companion fiber-reinforced concrete (FRC) prisms were tested under direct shear to obtain material properties such as shear strength and shear toughness. FRC test results indicated an almost linear increase in the shear strength of concrete with an increase in the fiber volume fraction. Fiber reinforcement enhanced the shear load capacity and shear deformation capacity of RC beams, but 1% fiber volume fraction was seen as optimal; no benefits were noted when the fiber volume fraction was increased beyond 1%. Finally, an equation is proposed to predict the shear capacity of RC beams.Key words: shear strength, fiber-reinforced concrete, RC beam, stirrups, energy absorption capacity, steel fiber, synthetic fiber.


Sign in / Sign up

Export Citation Format

Share Document