Temperature Response of Magnetostrictive/Piezoelectric Polymer Magnetoelectric Laminates

2011 ◽  
Vol 495 ◽  
pp. 351-354 ◽  
Author(s):  
Jon Gutiérrez ◽  
Andoni Lasheras ◽  
Jose Manuel Barandiaran ◽  
Jose Luis Vilas ◽  
María San Sebastián ◽  
...  

Magnetostrictive/piezoelectric hybrid composites have recently attracted renewed interest as high sensitivity sensors and actuators. One of the most common used geometry consists in laminated amorphous magetostrictive metal/piezoelectric layers, and the maximum magnetoelectric effect has been found at the electromechanical resonance of the system. Here we present results concerning the fabrication of such laminate composites sensor by using Vitrovac 4040® (Fe39Ni39Mo4Si6B12) as the magnetostrictive amorphous component and two different piezoelectric polymers: poly (vinylidene fluoride) (PVDF) and 2,6(β-CN)APB/ODPA (poli 2,6) polyimide, a new high temperature piezoelectric polymer. We have measured room temperature induced magnetoelectric voltages of 79.6 and 0.35 V/cm.Oe at the magnetoelastic resonance of the laminate when using PVDF and poli 2,6 polyimide as piezoelectric components. We have also tested the magnetoelectric response of both laminated composites at temperatures up to 85 °C, and we have observed that the PVDF polymer piezoelectric response quickly decays. Even if the induced magnetoelectric voltage is low, we discuss the advantage of using new piezoelectric polymers due to their good performance at high temperatures, up to 200 °C, making these laminate composites suitable for high temperature applications.

2012 ◽  
Vol 1398 ◽  
Author(s):  
Jon Gutiérrez ◽  
Andoni Lasheras ◽  
Jose Manuel Barandiarán ◽  
Jose Luis Vilas ◽  
María San Sebastián ◽  
...  

ABSTRACTThe temperature effect on the magnetoelectric response of hybrid magnetostrictive/piezoelectric laminated composites in the range from room temperature up to 85 ºC is presented. The samples analyzed consisted of alternating, stacked, layers of a magnetostrictive amorphous metal, and a piezoelectric polymer, bonded to each other with an epoxy. The maximum magnetoelectric effect was observed when the composites were driven at their electromechanical resonance. First, we present results on the fabricability of the laminated composite sensor consisting on Vitrovac 4040® (Fe39Ni39Mo4Si6B12) as the magnetostrictive amorphous component and two different piezoelectric polymers: poly(vinylidene fluoride) (PVDF) and 2,6(β-CN)APB/ODPA (poli 2,6) polyimide, a new type of high temperature piezoelectric polymer. At room temperature induced magnetoelectric voltages of 79.6 and 0.35 V/cm.Oe were measured when using PVDF and poli 2,6 polyimide respectively as the piezoelectric components. When heating, we have observed that the magnetoelectric response of the PVDF-containing device quickly decayed to about 5 V/cm.Oe, while for the poli 2,6- containing one it remained almost constat. We discuss the advantage of using this new piezoelectric polymer due to its good performance at high temperatures, making these magnetoelectric laminate composites suitable for high temperature applications.


2015 ◽  
Vol 644 ◽  
pp. 40-44 ◽  
Author(s):  
Andoni Lasheras ◽  
Jon Gutiérrez ◽  
Jose Manuel Barandiarán ◽  
D.A. Shishkin ◽  
A.P. Potapov

Fabrication of magnetoelectric laminates to be used high sensitivity sensors is a critical task and turns out to be influenced by different factors. Among them, the length of the composite (that determines the working frequency of the device) and the epoxy glue characteristics and cure process (that determines the ME signal measured at high temperatures) are of great importance. Here we present results concerning the magnetoelectric response of laminate composites fabricated with an Fe61,6Co16,4Si10,8B11,2amorphous alloy as the magnetostrictive component and the poly-vinylidene fluoride (PVDF) polymer as the piezoelectric one. Measurements have been performed with composites ranging from 3 cm to 1 cm length and from room temperature up to 100 oC.As observed, an appropriate gluing process between magnetostrictive and piezoelectric components assures the measured magnetoelectric signal to keep constant up to about 60 oC, a temperature where the α-relaxation of the PVDF occurs and the piezoelectric response starts decaying. On the other hand, magnetoelastic resonance (working) frequencies change from 67.5 KHz for the device with L=3 cm to 215 KHz (within the radio-frequency range) for the 1 cm long one. Even for the shortest laminate, we are still able to detect some 6 V/cm.Oe at 100 oC. This makes such laminate composites suitable for high temperature and high frequency applications.


2014 ◽  
Vol 1 (3-4) ◽  
Author(s):  
Cary Baur ◽  
Yuan Zhou ◽  
Justin Sipes ◽  
Shashank Priya ◽  
Walter Voit

AbstractIndustrial use of piezoelectric polymers is currently limited by low piezoelectric response and large performance losses at elevated operating temperatures. Leading polymers such as poly(vinylidene fluoride) and poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) possess piezoelectric d


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1028
Author(s):  
Na Zhao ◽  
Qijing Lin ◽  
Kun Yao ◽  
Fuzheng Zhang ◽  
Bian Tian ◽  
...  

The optical fiber temperature and refractive index sensor combined with the hollow needle structure for medical treatment can promote the standardization of traditional acupuncture techniques and improve the accuracy of body fluid analysis. A double-parameter sensor based on fiber Bragg grating (FBG) is developed in this paper. The sensor materials are selected through X-ray diffraction (XRD) analysis, and the sensor sensing principle is theoretically analyzed and simulated. Through femtosecond laser writing pure silica fiber, a high temperature resistant wavelength type FBG temperature sensor is obtained, and the FBG is corroded by hydrofluoric acid (HF) to realize a high-sensitivity intensity-type refractive index sensor. Because the light has dual characteristics of energy and wavelength, the sensor can realize simultaneous dual-parameter sensing. The light from the lead-in optical fiber is transmitted to the sensor and affected by temperature and refractive-index; then, the reflection peak is reflected back to the lead-out fiber by the FBG. The high temperature response and the refractive index response of the sensor were measured in the laboratory, and the high temperature characteristics of the sensor were verified in the accredited institute. It is demonstrated that the proposed sensor can achieve temperature sensing up to 1150 °C with the sensitivity of 0.0134 nm/°C, and refractive sensing over a refractive range of 1.333 to 1.4027 with the sensitivity of −49.044 dBm/RIU. The sensor features the advantages of two-parameter measurement, compact structure, and wide temperature range, and it exhibits great potential in acupuncture treatment.


2013 ◽  
Vol 543 ◽  
pp. 439-442 ◽  
Author(s):  
Jon Gutiérrez ◽  
Andoni Lasheras ◽  
Jose Manuel Barandiaran ◽  
Jose Luis Vilas ◽  
Alberto Maceiras ◽  
...  

Piezoelectricity in amorphous polymers is mainly due to the orientation polarization of the molecular dipoles. Aromatic polyimides are high-performance polymeric materials possessing large molecular dipoles. We already reported good magnetoelectric performance of laminate composites with Vitrovac 4040®as magnetostrictive component and the 2,6(b-CN)APB/ODPA (poli 2,6) polyimide as the piezoelectric. Although the piezoelectric response of this polyimide is good, its mechanical properties can be improved. To combine the best mechanical and piezoelectric response in the same polymer, copolyimides have been synthesized by reaction of the 4,4-oxydiphtalic anhydride (ODPA) with a mixture of 1,3-Bis-2-cyano-3-(3-aminophenoxy) phenoxybenzene (diamine 2CN) and 1,3-Bis (3-aminophenoxy) benzene (diamine 0CN). We present the piezoelectric, mechanical and ME performance of laminate composites of these copolyimides.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2688 ◽  
Author(s):  
Na Zhao ◽  
Qijing Lin ◽  
Zhuangde Jiang ◽  
Kun Yao ◽  
Bian Tian ◽  
...  

A temperature multipoint sensing system based on three cascade Mach–Zehnder interferometers (MZIs) is introduced. The MZIs with different lengths are fabricated based on waist-enlarged fiber bitapers. The fast Fourier transformation is applied to the overlapping transmission spectrum and the corresponding interference spectra can be obtained via the cascaded frequency spectrum based on the inverse Fourier transformation. By analyzing the drift of interference spectra, the temperature response sensitivities of 0.063 nm/°C, 0.071 nm/°C, and 0.059 nm/°C in different furnaces can be detected from room temperature up to 1000 °C, and the temperature response at different regions can be measured through the sensitivity matrix equation. These results demonstrate feasibility of multipoint measurement, which also support that the temperature sensing system provides new solution to the MZI cascade problem.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanfei Huang ◽  
Guanchun Rui ◽  
Qiong Li ◽  
Elshad Allahyarov ◽  
Ruipeng Li ◽  
...  

AbstractPiezoelectric polymers hold great potential for various electromechanical applications, but only show low performance, with |d33 | < 30 pC/N. We prepare a highly piezoelectric polymer (d33 = −62 pC/N) based on a biaxially oriented poly(vinylidene fluoride) (BOPVDF, crystallinity = 0.52). After unidirectional poling, macroscopically aligned samples with pure β crystals are achieved, which show a high spontaneous polarization (Ps) of 140 mC/m2. Given the theoretical limit of Ps,β = 188 mC/m2 for the neat β crystal, the high Ps cannot be explained by the crystalline-amorphous two-phase model (i.e., Ps,β = 270 mC/m2). Instead, we deduce that a significant amount (at least 0.25) of an oriented amorphous fraction (OAF) must be present between these two phases. Experimental data suggest that the mobile OAF resulted in the negative and high d33 for the poled BOPVDF. The plausibility of this conclusion is supported by molecular dynamics simulations.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 501 ◽  
Author(s):  
Federico Fabriani ◽  
Krishna Chytanya ◽  
Iucci Giovanna ◽  
Giulia Lanzara

One of the major challenges for the realization of ultra-light weight and intelligent materials with advanced sensing/actuation capabilities, is related to, among other things, the integration in the material of non-invasive but indeed highly performing sensors and actuators. The reduction in scale, weight, and flexibility of the sensing devices represents a critical aspect to reach this goal. These unique properties are here reached by using flexible piezoelectric polymer (Polyvinylidene fluoride, PVDF) nanofibers as sensing elements. The nanofibers, that in this case study are randomly distributed, form an ultra-thin nanostructured porous mat that was deposited through a far field electrospinning approach. The process was optimized to obtain a dominant β phase in the polymer to enhance the piezoelectric response. The electrospun fibers were characterized at different scales: at the molecular level to understand the β phase content (FTIR spectroscopy), as well as at the macroscopic level to investigate the resulting ferroelectric and electromechanical response The results presented in this paper show the great capability of the nanostructured porous mat to work as ultra-light weight dynamic sensing system. Its scalable size and intrinsic properties make it an ideal solution for the development of advanced intelligent materials that can work at different length-scales.


2020 ◽  
Author(s):  
yanfei Huang ◽  
Guanchun Rui ◽  
Elshad Allahyarov ◽  
Ruipeng Li ◽  
Masafumi Fukuto ◽  
...  

Abstract Piezoelectric polymers hold great potential for various electromechanical applications, but only show low performance, with |d33| < 30 pC/N. We prepared a highly piezoelectric polymer (d33 = -62 pC/N) based on a biaxially oriented poly(vinylidene fluoride) (BOPVDF, crystallinity = 0.52). After unidirectional poling, macroscopically aligned samples with pure β crystals were achieved, which showed an unprecedentedly high spontaneous polarization (Ps) of 140 mC/m2. Given the theoretical limit of Ps = 188 mC/m2 for the neat b crystal, the high Ps could not be explained by a simple two-phase model (i.e., the crystalline and the amorphous phases). Instead, we deduce that a significant amount (at least 0.25) of an oriented amorphous fraction (OAF) must be present between these two phases. Experimental data suggest that the mobile OAF resulted in the negative and high d33 for the poled BOPVDF. The plausibility of this conclusion was supported by molecular dynamics simulations.


1992 ◽  
Author(s):  
Oscar J. Almeida ◽  
Brian G. Dixon ◽  
Jill H. Hardin ◽  
John P. Sanford ◽  
Myles Walsh

Sign in / Sign up

Export Citation Format

Share Document