Design and Simulation of a Capacitive Biaxial Microaccelerometer

2012 ◽  
Vol 503 ◽  
pp. 194-198
Author(s):  
Yu Liu ◽  
Zhi Yu Wen ◽  
Li Chen ◽  
Hong Yun Yang

This paper presents a capacitive biaxial microaccelerometer with a single proof mass. The theoretical analysis results are confirmed by finite element analysis. The experimental results indicate the biaxial accelerometer with uniform axial sensitivities, good linearity and high cross-axis sensitivity immunity to the z-axis input.

1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2011 ◽  
Vol 287-290 ◽  
pp. 603-607
Author(s):  
Chun Lin Xia ◽  
Yang Fang Wu ◽  
Qian Qian Lu

Using domestic MFSP membrane as a medium of energy conversion, a kind of MFSP actuator was designed. The dedicated test equipment was constructed for experimental research, and the experimental results were given. The strip and circular MSFP membrane were analyzed qualitatively to obtain the deformation characteristics of membrane by finite element analysis software.


Author(s):  
Md Mohiuddin ◽  
Asma Akther ◽  
Eun Byul Jo ◽  
Hyun Chan Kim ◽  
Jaehwan Kim

The present study investigates a film actuator made with dielectric cellulose acetate films separated by narrow spacers as a means of electrostatic actuation for potential haptic application. Fabrication process for the actuator is explained along with experiments conducted over a wide frequency range of actuation frequency. A valid finite element simulation of the actuator is made on the quarter section of the actuator by using full 3D finite elements. Vibration characteristics such as fundamental natural frequency, mode shape and output velocity in the frequency range for haptic feeling generation are obtained from the finite element analysis and compared with the experimental results. Experimental results demonstrate that the finite element model is practical and effective enough in predicting the vibration characteristics of the actuator for haptic application. The film actuator shows many promising properties like high transparency, wide range of actuation frequency and high vibration velocity for instance.


Author(s):  
Ajay Garg

Abstract In high pressure applications, rectangular blocks of steel are used instead of cylinders as pressure vessels. Bores are drilled in these blocks for fluid flow. Intersecting bores with axes normal to each other and of almost equal diameters, produce stresses which can be many times higher than the internal pressure. Experimental results for the magnitude of maximum tensile stress along the intersection contour were available. A parametric finite element model simulated the experimental set up, followed by correlation between finite element analysis and experimental results. Finally, empirical methods are applied to generate models for the maximum tensile stress σ11 at cross bores of open and close ended blocks. Results from finite element analysis and empirical methods are further matched. Design optimization of cross bores is discussed.


2014 ◽  
Vol 580-583 ◽  
pp. 2134-2140
Author(s):  
Jian Zhang ◽  
Jian Feng Zhai ◽  
Xian Mei Wang ◽  
Jie Chen

Two-Dimensional finite element analysis was used to investigate the performance of seawall construction over weak subgrade soil using artificial base layer material consisted of cemented sand cushion comprising geosynthetics materials. Two types of base layer materials pure sand and cemented sand comprising husk rich ash and two types of geosynthetics materials geogrid and geotextile were used. Constitutive models were used to represent different materials in numerical analysis. The competence of two-dimensional numerical analysis was compared with experimental results. Numerical results showed a superior harmony with the experimental results. Finite element analysis model proved to be a great tool to determine the parameters that are difficult to measure in laboratory experiments. In addition, finite element analysis has the benefit of cost and time saving when compared to experimental investigation work. Numerical results showed strain induced in geosynthetics eliminated beyond a distance approximately equal six times of footing width.


2011 ◽  
Vol 121-126 ◽  
pp. 3431-3436
Author(s):  
Guo Quan Yang ◽  
You Qun Zhao ◽  
Jun Yan Li

This paper discussed the theoretical analysis and engineering improvement test verification of the crack problem in the back van of the vehicle. Causes that may result in the crack problem are firstly analyzed and then determined by the finite element analysis. Improvement are given and proved to be effective by the test verification of an improved vehicle. The method used in this paper will contribute to the analysis and solution of the crack problems in some parts of the vehicle and has reference value in engineering application.


1980 ◽  
Vol 47 (2) ◽  
pp. 377-382 ◽  
Author(s):  
K. Miya ◽  
T. Takagi ◽  
Y. Ando

Some corrections have been made hitherto to explain the great discrepancy between experimental and theoretical values of the magnetoelastic buckling field of a ferromagnetic beam plate. To solve this problem, the finite-element method was applied. A magnetic field and buckling equations of the ferromagnetic beam plate finite in size were solved numerically assuming that the magnetic torque is proportional to the rotation of the plate and by using a disturbed magnetic torque deduced by Moon. Numerical and experimental results agree well with each other within 25 percent.


Author(s):  
Guangbo Hao

XY compliant parallel manipulators (aka XY parallel flexure motion stages) have been used as diverse applications such as atomic force microscope scanners due to their proved advantages such as eliminated backlash, reduced friction, reduced number of parts and monolithic configuration. This paper presents an innovative stiffness centre based approach to design a decoupled 2-legged XY compliant parallel manipulator in order to better minimise the inherent parasitic rotation and have a more compact configuration. This innovative design approach makes all of the stiffness centres, associated with the passive prismatic (P) modules, overlap at a point that all of the applied input forces can go through. A monolithic compact and decoupled XY compliant parallel manipulator with minimised parasitic rotation is then proposed using the proposed design approach based on a 2-PP kinematically decoupled translational parallel manipulator. Its load–displacement and motion range equations are derived, and geometrical parameters are determined for a specified motion range. Finite element analysis comparisons are also implemented to verify the analytical models with analysis of the performance characteristics including primary stiffness, cross-axis coupling, parasitic rotation, input and output motion difference and actuator nonisolation effect. Compared with the existing XY compliant parallel manipulators obtained using 4-legged mirror-symmetric constraint arrangement, the proposed XY compliant parallel manipulators based on stiffness centre approach mainly benefits from fewer legs resulting in reduced size, simpler modelling as well as smaller lost motion. Compared with existing 2-legged designs with the conventional arrangement, the present design has smaller parasitic rotation, which has been proved from the finite element analysis results.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840043
Author(s):  
J. O. Yu ◽  
Y. H. Kim ◽  
Nagamachi Takuo

To eliminate the complexity of curvature extrusion process, a new extrusion method was proposed. In this study, a finite element analysis for curvature extrusion was studied to commercialize this extrusion method that creates curvature in a tilting method. When simulating an extrusion process, it is important to fix the appropriate friction coefficient and fillet value to avoid peel-out problems such that the finite element disappears. Therefore, the actual extrusion results and the simulated results were compared to find conditions that the element would not disappear. There was a good agreement between the simulation and experimental results when the coefficient friction was 0.4 and the fillet was 0.4 mm.


Sign in / Sign up

Export Citation Format

Share Document