Preparation and Characterization of Superionic Conductive Li2O-Al2O3-La2O3-TiO2-P2O5 Glass-Ceramics

2012 ◽  
Vol 509 ◽  
pp. 314-320 ◽  
Author(s):  
Hong Ping Chen ◽  
Hai Zheng Tao ◽  
Qi De Wu ◽  
Xiu Jian Zhao

Li2O-Al2O3(La2O3)-TiO2-P2O5 glass-ceramics were fabricated through heat-treatment of the original glass. The differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical workstation were employed to study the structural, morphology and electrical properties of the samples heat-treated at different temperatures. The results showed that: the glass-ceramics consist of the dominating LiTi2(PO4)3 phases, trifle AlPO4, TiO2 and unknown phases. With the heat-treatment temperature increasing from 700 °C to 1100 °C, the structure of glass-ceramic become denser and grain grew, lithium ion conductivity increased quickly and subsequent cut down gradually. While the specimen was obtained by crystallization at 900 °C for 12 h, the total conductivity of glass-ceramic material come up to the maximum (5.85 ×10-4 S•cm-1) at 25 °C. This inorganic solid electrolyte has a potential application in lithium batteries or other devices.

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2539 ◽  
Author(s):  
Peiyou Li ◽  
Yongshan Wang ◽  
Fanying Meng ◽  
Le Cao ◽  
Zhirong He

The martensitic transformation and superelasticity of Ti49Ni51 shape memory alloy heat-treatment at different temperatures were investigated. The experimental results show that the microstructures of as-cast and heat-treated (723 K) Ni-rich Ti49Ni51 samples prepared by rapidly-solidified technology are composed of B2 TiNi phase, and Ti3Ni4 and Ti2Ni phases; the microstructures of heat-treated Ti49Ni51 samples at 773 and 823 K are composed of B2 TiNi phase, and of B2 TiNi and Ti2Ni phases, respectively. The martensitic transformation of as-cast Ti49Ni51 alloy is three-stage, A→R→M1 and R→M2 transformation during cooling, and two-stage, M→R→A transformation during heating. The transformations of the heat-treated Ti49Ni51 samples at 723 and 823 K are the A↔R↔M/A↔M transformation during cooling/heating, respectively. For the heat-treated alloy at 773 K, the transformations are the A→R/M→R→A during cooling/heating, respectively. For the heat-treated alloy at 773 K, only a small thermal hysteresis is suitable for sensor devices. The stable σmax values of 723 and 773 K heat-treated samples with a large Wd value exhibit high safety in application. The 773 and 823 K heat-treated samples have large stable strain–energy densities, and are a good superelastic alloy. The experimental data obtained provide a valuable reference for the industrial application of rapidly-solidified casting and heat-treated Ti49Ni51 alloy.


2008 ◽  
Vol 01 (01) ◽  
pp. 25-30 ◽  
Author(s):  
MEHDI MIRSANEH ◽  
BEATA ZALINSKA ◽  
OLIVER P. LEISTEN ◽  
IAN M. REANEY

A castable, low melting temperature glass-ceramic system (30% Bi 2 O 3, 30% Nb 2 O 5, 30% B 2 O 3 and 10% SiO 2, in mol%) suitable for microwave applications is fabricated and characterized. Depending on heat treatment temperature, the glass ceramic exhibits permittivity, 15 ≤ ε r ≤ 41, temperature coefficient of resonant frequency of -160 ≤ τ f ≤ +100 MK -1 and microwave quality factor of 300 GHz ≤ Qf ≤ 15000 GHz . The highest Qf occurs at 960°C heat treatment with ε r = 15, τ f = -80 MK -1 and Qf = 15000 GHz . Applications are envisaged such as castable dielectrically-loaded antenna pucks, removing the need for complex ceramic processing.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Hafiz Mohd Zaid ◽  
Khamirul Amin Matori ◽  
Sidek Hj. Abdul Aziz ◽  
Halimah Mohamed Kamari ◽  
Wan Mahmood Mat Yunus ◽  
...  

Willemite glass-ceramics were successfully derived from conventional melt-quench ZnO-SLS precursor glass by an isothermal heat treatment process. The effect of heat treatment temperatures on the physical properties was investigated by Archimedes principle and linear shrinkage. The generation of willemite crystal phase and morphology with increase in heat treatment temperature was examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM) techniques. X-ray diffraction revealed that the metastableβ-Zn2SiO4and thermodynamically stable zinc orthosilicateα-Zn2SiO4phases can be observed at temperatures above 700°C. The experimental results indicated that the density and shrinkage of the glass-ceramic vary with increasing the sintering temperature. FTIR studies showed that the structure of glass-ceramic consists of SiO2and ZnO4units and exhibits the structural evolution of willemite glass-ceramics. The characteristic of strong vibrational bands can be related to theSiO44-tetrahedron corresponding to reference spectra of willemite.


2014 ◽  
Vol 988 ◽  
pp. 145-150
Author(s):  
Jian Chen ◽  
Ming Zhang ◽  
Dong Yang ◽  
Huan Liang

CuNiCoBe alloy and CuCoBe alloy were cast by the vacuum inductive melting technique, and were heat treated under certain parameters. By using optical microscope, sclerometer and conductivity meter, the properties of two alloys were investigated after heat treatment. Experimental results show that the process of 980 °C for solid solution and three hours of aging at 450 °C is the best heat treatment for CuCoBe alloy, while 960 °C is the best solid solution treatment temperature for CuNiCoBe alloy with the same aging measures. Ni is beneficial to improve the hardness and conductivity of alloys, and CuNiCoBe alloy has better strength, hardness and conductivity than CuCoBe alloy at different temperatures, and two alloys all have a conductivity mutation increase near 450 °C. CuNiCoBe alloy and CuCoBe alloy soften respectively at 464 °C and 471 °C.


2004 ◽  
Vol 18 (15) ◽  
pp. 2215-2221 ◽  
Author(s):  
V. SIMON ◽  
D. ENIU ◽  
M. NEUMANN ◽  
S. SIMON

The heat treatment carried out at different temperatures between 1000 and 1200°C for the same time and under similar conditions leads to differences in the elemental composition and therefore in the ratio of the component elements on the sample surface. They are evidenced by changes in O1s core level XPS spectra. The ratio of bridging oxygen (BO) to non-bridging oxygen (NBO) in iron containing CaO – SiO 2– P 2 O 5 glasses changes differently for the glass ceramic sample resulting from heat treatment carried out at 1000°C and for those obtained at higher treatment temperatures.


2015 ◽  
Vol 761 ◽  
pp. 412-416 ◽  
Author(s):  
Kok Tee Lau ◽  
Mohd Hafrez Razi Ab Razak ◽  
Swee Leong Kok ◽  
Muhammad Zaimi ◽  
Mohd Warikh Abd Rashid ◽  
...  

Polymeric poly (vinyliden fluoride) (PVDF) is nontoxic. It possesses a better mechanical flexibility and requires a lower synthesis temperature, as compared to the piezoceramic counterparts. In order to achieve a competitive advantage against the current piezoelectric sensor, graphite could replace a more expensive silver-palladium as the electrodes for the piezoelectric PVDF. This paper reports the preliminary results on the synthesis of steel-supported graphite-PVDF/PVDF/graphite-PVDF composite films using the two-step process, consisted of the electrophoretic deposition (EPD) and heat treatment. The composite films were characterized by means of the optical microscopy, scanning electron microscopy, X-ray diffraction and differential scanning calorimetry. The heat treated graphite-PVDF electrode deposited by EPD provides adequate mechanical strength for the subsequent depositions of pure PVDF layer and the second layer of graphite-PVDF composite electrode. However, the final heat treatment stage did not eliminate the fine and large cracks of the composite film, which might be attributed to high residue stresses and weak bonding between graphite and PVDF particles in the post-heat treated composite films. Nevertheless, the increase in final heat treatment temperature of the composite film at Stage 3 improved the graphite and PVDF grain alignment, as well as its crystallinity.


2018 ◽  
Vol 281 ◽  
pp. 692-698 ◽  
Author(s):  
Meng Jie Zhao ◽  
Xiang Yu Zou ◽  
Qin Lei Wei ◽  
Shuo Meng ◽  
Hong Bo Zhang ◽  
...  

Transparent glass ceramics containing Na3.6Y1.8(PO4)3 crystals were successfully synthesized using high temperature melting quenching and subsequent heat treatment of the precursor glass with a composition 15Na2CO3-3Y2O3-45SiO2-31H3BO3- 5.4P2O5-0.6Sb2O3 (mol%). The impact of heat treatment is investigated in detail. The glass sample was tested by differential scanning calorimetry analysis to determine the heat treatment system. The ideal heat-treated condition is at 650°C for 2 h. The structure and morphology properties were systematically analyzed by recording X-ray diffraction patterns and scanning electron microscopy images, which indicate that Na3.6Y1.8(PO4)3 crystal were precipitated homogeneously among the glass matrix. The microstructural of precursor glass and glass ceramic were compared by analyzing FTIR spectra, indicating the formation of phosphate groups in glass ceramic. The refractive index of glass ceramics samples were measured. In the visible region, the transmittance of glass ceramics is up to 85%. Moreover, the relationship between the refractive index of the sample and the transmittance is discussed.


2017 ◽  
Vol 751 ◽  
pp. 455-460 ◽  
Author(s):  
Nattapol Laorodphan ◽  
Jiratchaya Ayawanna

The crystallization of planar solid oxide fuel cells (SOFCs) sealant glasses in the systems BaO-Al2O3-SiO2-B2O3 (BaBS) and BaO-Al2O3-SiO2-B2O3-ZnO (BaBS-Zn) was investigated via both X-ray diffractometer and scanning electron microscopy with energy dispersive spectroscopy. The effect of nucleation heat-treatment of the BaBS glass at different temperature for 5 hours, i.e. 550 and 590 °C, on the crystallization behavior was also studied. Thermal expansion profiles of the glasses indicate that both glasses have a low sealing temperature. XRD patterns of all BaBS glass-ceramics, devitrified at 800 °C for 30 hours, show that Ba2Si3O8, BaAl2Si2O8, Ba3B2O6 and some unknown crystalline phases were found. It was also found that crystalline size of unknown barium aluminosilicate with low silicon content depends on the nucleation heat-treatment temperature. For the ZnO-containing glass, ZnO reduces the coefficient of thermal expansion value of glass and causes the devitrification of large needle-like barium zinc silicate phases. The crack at the YSZ/BaBS-Zn glass-ceramic interface was also observed. Two barium silicate phases, which are BaZnSiO4 and BaZn2Si2O7 were devitrified in ZnO-containing glass-ceramic.


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 148-159
Author(s):  
Nirajan Ojha ◽  
Iuliia Dmitrieva ◽  
Wilfried Blanc ◽  
Laeticia Petit

Even though the (75 NaPO3-25 CaF2) (in mol%) glass can be heat-treated into transparent glass-ceramic with Er3+ doped CaF2 crystals precipitating in the volume of the glass during heat-treatment, this glass was found to be a poor glass former, limiting its use as upconverter under 975 nm pumping. In this study, the impact of the glass composition on the thermal, optical and structural properties of the glass was investigated in order to understand how the glass composition can be tailored for the development of thermally stable upconverter glass-based material. The addition of MgO, Fe2O3 and Al2O3 in the NaPO3-CaF2 glass system increases the thermal stability of glass due to the depolymerization of the glass network. However, the changes in the glass composition also impacted on the nucleation and growth process. Indeed, CaF2 and other crystals were found in the newly developed glasses after heat-treatment leading to glass-ceramics with lower intensity of upconversion than the (75 NaPO3-25 CaF2) glass-ceramic used as a reference. Glasses were also prepared with different concentrations of Er2O3 and ErF3. These glasses were found to be promising as not only are they thermally stable, but they also exhibit green and red emission with high intensity under 975 nm pumping due to Er3+ clustering.


2020 ◽  
Vol 10 (14) ◽  
pp. 4940
Author(s):  
Muhammad Faris Syazwan Mohd Shofri ◽  
Mohd Hafiz Mohd Zaid ◽  
Khamirul Amin Matori ◽  
Yap Wing Fen ◽  
Yazid Yaakob ◽  
...  

A new transparent zinc silicate glass-ceramic was derived from the 55ZnO–5B2O3–40SLS glass system via a controlled heat-treatment method. The precursor glass sample was placed through the heat-treatment process at different temperatures to study the progress in phase transformation, optical performance and emission intensity of the zinc silicate glass-ceramics. For this project, material characterization was measured through several tests using densimeter and linear shrinkage measurement, X-ray diffraction (XRD), Fourier transform infrared reflection (FTIR), ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy. The density and linear shrinkage measurements show that the density of the particular glass-ceramic samples increases with the progression of heating temperature. The XRD analysis displays the result in which the zinc silicate crystal starts to grow after the sample was treated at 700 °C. In addition, the FTIR spectra indicated that the crystallization of the zinc silicate phase occurred with the appearance of SiO4, ZnO4 and Si-O-Zn bands. UV–visible exhibited the small changes when the value for the optical band gap decreased from 3.867 to 3.423 eV, influenced by the temperature applied to the sample. Furthermore, the PL spectroscopy showed an enhancement of broad green emission at 534 nm upon the increased heat-treatment temperature. Thus, it can be concluded there is the progression of crystal growth as the heat-treatment temperature increased; three emission peaks appeared at 529, 570 and 682 nm for the green, yellow and red emissions, respectively.


Sign in / Sign up

Export Citation Format

Share Document