Effect of Nano Zirconia on Microstructure and Electrochemical Behavior of Aluminium-Zinc Sacrificial Anodes

2012 ◽  
Vol 519 ◽  
pp. 41-44 ◽  
Author(s):  
Ying Zhang ◽  
Ai Chen ◽  
Cheng Liu ◽  
Hai Rong Wang ◽  
Ze Song Li

In this study, nano ZrO2 powders were incorporated into Al-5 wt% Zn sacrificial anode and the effect of ZrO2 contents (wt% =0.1, 0.2) on microstructures and electrochemical properties were investigated. The results show that the addition of nano ZrO2 was effective on improving metallurgical and electrochemical properties. With the increase of ZrO2 content, the dendritic structure is fined gradually and the corrosion current density values is also increased. The incorporation of ZrO2 also can result in a moderate efficiency value. When the ZrO2 content in the alloy was 0.2 wt%, the optimal microstructure, electrochemical properties and as high as 70% the efficiency value was obtained.

2020 ◽  
Vol 9 (1) ◽  
pp. 496-502 ◽  
Author(s):  
Zhaohui Zhang ◽  
Bailong Liu ◽  
Mei Wu ◽  
Longxin Sun

AbstractThe electrochemical behavior of gold dissolution in the Cu2+–NH3–S2O32−–EDTA solution has been investigated in detail by deriving and analyzing the Tafel polarization curve, as this method is currently widely implemented for the electrode corrosion analysis. The dissolution rate of gold in Cu2+–NH3–S2O32−–EDTA solution was determined based on the Tafel polarization curves, and the effects of various compound compositions in a Cu2+–NH3–S2O32−–EDTA mixture on the corrosion potential and corrosion current density were analyzed. The results showed that the corrosion potential and polarization resistance decreased, whereas the corrosion current density increased for certain concentrations of S2O32−–NH3–Cu2+ and EDTA, indicating that the dissolution rate of gold had changed. The reason for promoting the dissolution of gold is also discussed.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


2017 ◽  
Vol 744 ◽  
pp. 114-120
Author(s):  
Kyung Man Moon ◽  
Sung Yul Lee ◽  
Jae Hyun Jeong ◽  
Myeong Hoon Lee

In this study, seven types of mortar test specimens were manufactured with parameters, that is, the surface of the reinforced steel bar was treated with hot dip galvanizing (Zn) and the surface of the test specimen was coated with underwater paint, and four types of inhibitors (DAW, MCI, DCI, and Silcon) were added in mortars respectively. And, the seven types of mortar test specimens were immersed in seawater for 4 years. The corrosion properties of the reinforced steel bars embedded in mortar test specimens were investigated using electrochemical methods. The corrosion potentials of the test specimens with painting on the surface of the specimen and Zn coating on the surface of the steel bar exhibited the noblest and lowest values respectively after one year, however, after 4 years, the specimens of underwater painting and of addition of Silcon inhibitor indicated the noblest and lowest values of corrosion potentials respectively. Furthermore, the painting specimen exhibited the smallest values of corrosion probability as welll as of the corrosion current density, while, addition of MCI inhibitor showed the highest values of both corrosion probability and corrosion current density. Moreover, the painting specimen showed the smallest value of neutralization degree among all the specimens, and the largest value of neutralization degree was observed at the specimen of natural condition (no adding of inhibitor, no painting and no Zn coating). As a result, it is considered that the addition of inhibitors, coating with hot dip galvanizing (Zn), and painting on the surface have the effects not only to inhibit the neutralization degree but also to increase the corrosion resistance of the embedded steel bar.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 397 ◽  
Author(s):  
Hehong Zhang ◽  
Xiaofeng Zhang ◽  
Xuhui Zhao ◽  
Yuming Tang ◽  
Yu Zuo

A chemical conversion coating on 5052 aluminum alloy was prepared by using K2ZrF6 and K2TiF6 as the main salts, KMnO4 as the oxidant and NaF as the accelerant. The surface morphology, structure and composition were analyzed by SEM, EDS, FT–IR and XPS. The corrosion resistance of the conversion coating was studied by salt water immersion and polarization curve analysis. The influence of fluorosilane (FAS-17) surface modification on its antifouling property was also discussed. The results showed that the prepared conversion coating mainly consisted of AlF3·3H2O, Al2O3, MnO2 and TiO2, and exhibited good corrosion resistance. Its corrosion potential in 3.5 wt % NaCl solution was positively shifted about 590 mV and the corrosion current density was dropped from 1.10 to 0.48 μA cm−2. By sealing treatment in NiF2 solution, its corrosion resistance was further improved yielding a corrosion current density drop of 0.04 μA cm−2. By fluorosilane (FAS-17) surface modification, the conversion coating became hydrophobic due to low-surface-energy groups such as CF2 and CF3, and the contact angle reached 136.8°. Moreover, by FAS-17 modification, the corrosion resistance was enhanced significantly and its corrosion rate decreased by about 25 times.


2010 ◽  
Vol 663-665 ◽  
pp. 473-476
Author(s):  
Shu Qi Zheng ◽  
Chang Feng Chen ◽  
Rui Jing Jiang ◽  
Dan Ni Wang

In the environment with H2S/CO2 or Na2S, the corrosion behavior of Lanthanum hexaboride (LaB6) was investigated by electrochemistry methods. The results indicated that the corrosion potential (Ecorr) and Rf of LaB6 increased as the partial pressure of H2S increased, while the corrosion current density (Icorr) decreased. In the environment containing Na2S, as the content of Na2S increased, the corrosion potential (Ecorr) and Rf of LaB6 decreased, while the corrosion current density (Icorr) increased. Thus, the addition of H2S into the environment with H2S/CO2 would inhibit the corrosion of LaB6; while in the environment containing Na2S, the increasing of the content of Na2S would accelerate the corrosion of LaB6.


2014 ◽  
Vol 61 (3) ◽  
pp. 158-165 ◽  
Author(s):  
Shamsad Ahmad

Purpose – The purpose of this paper was to explore the possibility of establishing an empirical correlation between concrete resistivity and reinforcement corrosion rate utilizing the experimental data generated by measuring corrosion current density of reinforced concrete specimens subjected to chloride-induced corrosion at different levels of concrete resistivity. Design/methodology/approach – To generate concrete resistivity vs corrosion current density data in a wide range, ten reinforced concrete specimens were prepared and allowed to corrode under severe chloride exposure. After significantly corroding the specimens, they were removed from the chloride exposure and were subjected to different moisture levels for achieving variation in the resistivity of concrete so that reasonably good number of resistivity vs corrosion rate data can be obtained. Resistivity and corrosion current density tests were conducted for all the ten specimens and their values were measured in wide ranges of 0.8-65 kΩ·cm and 0.08-11 μA/cm2, respectively. Findings – Data generated through this study were utilized to obtain an empirical relationship between concrete resistivity and corrosion current density. The trend of results obtained using the empirical correlation model developed in the present study was in close agreement with that obtained using a theoretical model reported in literature. Originality/value – The empirical correlation between concrete resistivity and reinforcement corrosion rate obtained under this work can be used for evaluation of reinforcement corrosion utilizing the resistivity values measured non-destructively.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4904
Author(s):  
Hyunbin Jo ◽  
Soomin Lee ◽  
Donghyun Kim ◽  
Junghoon Lee

Sealing as a post treatment of anodized aluminum is required to enhance the corrosion resistance by filling nanopores, which allow the penetration of corrosive media toward the base aluminum. We designed a mixed sealing solution with nickel acetate and ammonium fluoride by modifying traditional nickel fluoride cold sealing. The concentration of mixed sealing solution affected the reaction rate of sealing and corrosion current density of anodized aluminum alloy. The higher concentration of mixed sealing solution improved the sealing rate, which was represented by a decrease of corrosion current density of anodized aluminum alloy. However, a mixed sealing solution with 2/3 concentration of general nickel fluoride sealing solution operated at room temperature showed the lowest corrosion current density compared to traditional methods (e.g., nickel fluoride cold sealing (NFCS) and nickel acetate hot sealing) and other mixed sealing solutions. Moreover, the mixed sealing solution with 2/3 concentration of general NFCS had a lower risk for over sealing, which increases the corrosion current density by excessive dissolution of anodic oxide. Therefore, the mixed sealing solution with optimized conditions designed in this work possibly provides a new method for enhancing the corrosion resistance of anodized aluminum alloys.


2013 ◽  
Vol 756-759 ◽  
pp. 85-88
Author(s):  
Xiao Ming Wang ◽  
Sheng Zhu ◽  
Qing Chang ◽  
Guo Feng Han

Al-based coating on ZM5 magnesium alloy was prepared by Supersonic Particles Deposition (SPD). Electrochemical working station was utilized to test polarization curve, corrosion potential and electrochemical impedance spectroscopy etc. The results indicted that corrosion potential of Al-Si coating was about-767.6mV, much higher than that of ZM5 Mg-substrate; And corrosion current density of the coating sample decreased three order of magnitude than that of the uncoated. Compared to Mg-substrate, the radius of capacitive impedance arc of the coating enlarged and impedance modulus improved two order of magnitude.


2017 ◽  
Vol 64 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Shamsad Ahmad

Purpose This study aims to make an effort to develop a model to predict the residual flexural strength of reinforced concrete beams subjected to reinforcement corrosion. Design/methodology/approach For generating the required data to develop the model, a set of experimental variables was considered that included corrosion current density, corrosion duration, rebar diameter and thickness of concrete cover. A total of 28 sets of reinforced concrete beams of size 150 × 150 × 1,100 mm were cast, of which 4 sets of un-corroded beams were tested in four-point bend test as control beams and the remaining 24 sets of beams were subjected to accelerated rebar corrosion inducing different levels of corrosion current densities for different durations. Corroded beams were also tested in flexure, and test results of un-corroded and corroded beams were utilized to obtain an empirical model for estimating the residual flexural strength of beams for given corrosion current density, corrosion duration and diameter of the rebars. Findings Comparison of the residual flexural strengths measured experimentally for a set of corroded beams, reported in literature, with that predicted using the model proposed in this study indicates that the proposed model has a reasonably good accuracy. Originality/value The empirical model obtained under this work can be used as a simple tool to predict residual flexural strength of corroded beams using the input data that include rebar corrosion rate, corrosion duration after initiation and diameter of rebars.


Sign in / Sign up

Export Citation Format

Share Document