A New Deep Red-Emitting Mn2+-Activated SrLaGa3S6O Phosphor

2012 ◽  
Vol 531-532 ◽  
pp. 145-148 ◽  
Author(s):  
Rui Jin Yu ◽  
Jin Young Park ◽  
Hyun Kyoung Yang ◽  
Byung Kee Moon ◽  
Byung Chun Choi ◽  
...  

A new deep red-emitting Mn2+-activated SrLaGa3S6O phosphor was first prepared by a solid-state reaction method. Their luminescence properties were investigated by photoluminescence excitation and emission spectra. The emission spectrum shows a broad band with an emission maximum at 668 nm under the host excitation of 340 nm. The full width at half maximum (FWHM) of the emission peak is about 83 nm. The CIE chromaticity coordinates (x = 0.673 and y = 0.312) shows that the phosphor emission is in the deep red region and were very near to the NTSC standard values for red. Since the excitation band of the phosphor lies in the near UV excitable region, giving a deep red emission, it can be used for applications in near UV phosphor converted white LED lighting and display devices.

2015 ◽  
Vol 15 (10) ◽  
pp. 8028-8033 ◽  
Author(s):  
Yeon Woo Seo ◽  
Mi Noh ◽  
Byung Kee Moon ◽  
Jung Hyun Jeong ◽  
Hyun Kyoung Yang ◽  
...  

Eu3+ doped CaGd4O7 phosphors have been newly synthesized using a solvothermal reaction method and sintered at 1400 °C. The phase, composition, morphologies, and photoluminescent properties of the phosphors have been well characterized by means of the X-ray diffraction (XRD) patterns, energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL) spectroscopy, and decay curves, respectively. The XRD patterns of the as-prepared phosphors confirm their monoclinic structure and the FE-SEM images reveal flower-like morphology, formed through agglomeration. The calculated size of the crystallites was approximately 83 nm. The photoluminescence excitation (PLE) spectra of CaGd4O7: Eu3+ phosphors consist of a broad band due to the charge transfer (CT) electronic transition, and several sharp peaks that can be attributed to the f–f transitions of Eu3+ and Gd3+. The PL spectra exhibited a stronger red emission corresponding to the 5D0→7F2 transition. The CIE chromaticity coordinates of the phosphors were calculated and all the chromaticity coordinates have been placed in the red spectral region. These luminescent powders are expected to have potential applications for white light-emitting diodes (WLEDs) and optical display systems.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Mourad Derbal ◽  
Lakhdar Guerbous ◽  
Ouadjaout Djamel ◽  
Chaminade Jean Pierre ◽  
Mohyddine Kadi-Hanifi

(, 0.5, 1, 5, and 10 at.%) polycrystalline powders blue phosphors were prepared via the classical solid-state reaction method. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation, and emission spectra were used to characterize phosphors. By analyzing the excitation and emission spectra of samples, the result indicates that there exists the energy transfer only from the group to the energy level of ion. On the other hand, the influence of the thulium concentration on the blue emission transition and and the emission of group are investigated.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 403
Author(s):  
Zijun Chen ◽  
Huiyi Xu ◽  
Chunyan Cao ◽  
Xiaoting Chen ◽  
Min Zhang ◽  
...  

In this paper, Sm3+ doped Lu2W0.5Mo0.5O6, Lu2WMoO9, and Lu2(W0.5Mo0.5O4)3 materials were synthesized by using a two-step solid-state reaction method. The synthesized materials were characterized by X-ray diffraction (XRD) patterns, field emission scanning electronic micrograph (FE-SEM) pictures, photoluminescence (PL) excitation and emission spectra, and temperature-dependent emission intensities. Orange-reddish light could be observed from the phosphors under ultraviolet (UV) 365 nm light. The Sm3+ doped Lu2WMoO9 had enhanced PL intensities compared to the other two materials. The excitation, the energy transfer, the nonradiative relaxation, and the emission processes were illustrated by using schematic diagrams of Sm3+ in Lu2MoWO9. The optimal Sm3+ doping concentration was explored in the enhancing luminescence of Lu2WMoO9. By combing the Sm3+ doped Lu2WMoO9 to UV 365 nm chips, near white lighting emitting diode (W-LED) were obtained. The phosphor can be used in single phosphor-based UV W-LEDs.


2020 ◽  
Vol 185 ◽  
pp. 04044
Author(s):  
Mingyang Qu ◽  
Xiyan Zhang ◽  
Xiaoyun Mi ◽  
Quansheng Liu ◽  
Shaoqiu Xu

In this work, a series of red emitting Lu3Te2Li3O12: Eu3+ phosphors were synthesized for the first time by high temperature solid state reaction. The structure was characterized by X-ray diffraction. The excitation spectra, emission spectra and CIE chromaticity coordinate were studied. The phosphors show strong red emission at 611 nm due to the 5D0-7F2 transition of Eu3+ ions. The optimal doping concentration of Eu3+ in LTL host is x = 0.5 due to the concentration quenching mechanism of dipole-dipole interaction. The CIE chromaticity coordinates of the LTL: 0.5Eu3++ phosphor is (0.644,0.355), and the purity of the color is up to 93.61%. The phosphor can be considered as a potential red-emitting candidate for near UV WLEDs.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jagjeet Kaur ◽  
Yogita Parganiha ◽  
Vikas Dubey

The present paper reports photoluminescence (PL) and thermoluminescence (TL) properties of rare earth-doped calcium bromo-fluoride phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by Solid state reaction method (conventional method). The PL emission spectrum of the prepared phosphor shows intense peaks in the red region at 611 nm for 5D0→7F2 transitions, and the PL excitation spectra show a broad band located around 220–400 nm for the emission wavelength fixed at 470 nm. The TL studies were carried out after irradiating the phosphor by UV rays with different exposure time. The glow peak shows second-order kinetics. The present phosphor can act as host for red light emission in display devices.


2007 ◽  
Vol 26-28 ◽  
pp. 573-576 ◽  
Author(s):  
K.S. Bartwal ◽  
B.K. Singh ◽  
H. Ryu

CaAl2O4:Eu2+ with high brightness and long persistent luminescence were prepared by solid state reaction method. The phosphor compositions with varying Eu2+ were investigated by powder X-ray diffractometer (XRD), SEM, TEM, photoluminescence excitation and emission spectra. Broad band UV excited luminescence of the CaAl2O4:Eu2+ was observed in the blue region (λmax = 440 nm) due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. The particle size also plays a role deciding the luminescence characteristics of these phosphors. The decay time of the persistence indicated that the persistent luminescence phosphor has bright phosphorescence and maintains a long duration.


2021 ◽  
Author(s):  
Marwa Enneffati ◽  
Mohammed Rasheed ◽  
Narjes Aouani ◽  
Bassem Louati ◽  
Kamel Guidara ◽  
...  

Abstract Sm3+ activated NaCdVO4 phosphors were prepared by the simple solid-state reaction method. X-ray diffraction, dispersive energy (EDS), scanning electron microscope (SEM), infrared as well as photoluminescence (PL) techniques were used to characterize obtained samples. Irregular and non-uniform structures were observed by SEM. EDS spectra confirmed the presence of Na, Cd, V, O and Sm elements in each sample. Uuder 405nm excitation, the NaCd1 − xVO4: xSm (x = 0.01, 0.03 and 0.05) exhibits a bright red emission consisting mainly of four wavelength peaks at 556, 593, 650 and 700 nm. The highest emission intensity was found with a composition of x = 0.05. The analysis of PL spectra suggest that studied samples can be used as a red emitting phosphors candidates for fabrication of white LEDs. The CIE chromaticity coordinates of prepared samples were close to the blue-emitting phosphors for NaCdVO4 and red-emitting ones for NaCd0.99Sm0.01VO4, NaCd0.97Sm0.03VO4, and NaCd0.95Sm0.05VO4. The band gap energies of phosphors were calculated from reflectance data using K-M function.


2011 ◽  
Vol 295-297 ◽  
pp. 547-550
Author(s):  
Jia Yue Sun ◽  
Jin Li Lai ◽  
Hai Yan Du

A series of new Na3CaB5O10:Eu3+ phosphor was synthesized by a solid-state reaction method, and its luminescent properties were investigated. The phase formation of phosphors was confirmed by X-ray powder diffraction (XRD). The excitation spectra exhibited that the phosphors could be effectively excited by near ultraviolet (392 nm) and blue (464 nm) light, which perfectly match the emission wavelength of near-UV light-emitting diodes (LEDs). The emission spectra showed that two characteristic red emission lines peaking at 592 and 613 nm can be obtained upon 394 and 463 excitation with the chromaticity coordinates of (0.6347, 0.3649), which are due to 5D0- 7F1 and 5D0-7F2transitions of Eu3+ ions. The effect of Eu3+ concentration on the emission spectrum of Na3CaB5O10:Eu3+ phosphor was studied. The results showed that the emission intensity increased with increasing Eu3+ concentration, and then decreased because of concentration quenching. The obtained results indicated that this phosphor could be a promising candidate for near-UV white LEDs.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Le Zhang ◽  
Zhou Lu ◽  
Pengde Han ◽  
Lixi Wang ◽  
Qitu Zhang

Mn2+ions codoped Sr2SiO4 : Dy3+phosphors were prepared by the solid-state reaction method using NH4Cl as the flux. Their phase compositions, photoluminescence properties, and the energy transfer process were systematically investigated. All Mn/Dy codoped powders wereα′-Sr2SiO4. The codoping concentration range of Mn2+was≤4.0 mol% to keep the structure undamaged. The broad red emission of Mn2+centered at 647 nm in Sr2SiO4 : Mn, Dy powders, which effectively compensated the red emission of Sr2SiO4 : Dy3+phosphor. The CIE chromaticity coordinates dramatically changed from (0.310, 0.340) to (0.332, 0.326) due to the red enhancement via the energy transfer from Dy3+to Mn2+. This energy transfer is realized by the exchange interaction. But the luminescence quenching of Sr2SiO4 : Dy, Mn phosphor was mainly caused by the electric multipoles interaction. The concentration optimized (Sr0.96, Mn0.02, Dy0.02)2SiO4phosphor with high and almost pure white emission has great potential to act as a single-matrix white phosphor for white LEDs.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Sara Targonska ◽  
Rafal J. Wiglusz

In this paper, a series of structurally modified silicate-substituted apatite co-doped with Sr2+ and Eu3+ ions were synthesized by a microwave-assisted hydrothermal method. The concentration of Sr2+ ions was set at 2 mol% and Eu3+ ions were established in the range of 0.5–2 mol% in a molar ratio of calcium ion amount. The XRD (X-ray powder diffraction) technique and infrared (FT-IR) spectroscopy were used to characterize the obtained materials. The Kröger–Vink notation was used to explain the possible charge compensation mechanism. Moreover, the study of the spectroscopic properties (emission, emission excitation and emission kinetics) of the obtained materials as a function of optically active ions and annealing temperature was carried out. The luminescence behavior of Eu3+ ions in the apatite matrix was verified by the Judd–Ofelt (J-O) theory and discussed in detail. The temperature-dependent emission spectra were recorded for the representative materials. Furthermore, the International Commission on Illumination (CIE) chromaticity coordinates and correlated color temperature were determined by the obtained results.


Sign in / Sign up

Export Citation Format

Share Document