The Preparation of Size-Controlled Antimony Nanoparticles by Electrochemical Method

2013 ◽  
Vol 562-565 ◽  
pp. 716-720
Author(s):  
Jian Lin Xu ◽  
Jia Wang ◽  
Li Hui Zhang ◽  
Lei Niu ◽  
Jian Bin Zhang ◽  
...  

This paper prepared some antimony nanoparticles with different particle size by electrochemical method. A method of preparing size-controlled antimony nanoparticles was established in the hydrochloric acid solution, which alkyphenol ethoxylates emulsifier was used as surface dispersants by electrochemical technology based on the optimization of the preparation technology. Those obtained antimony nanoparticles was characterized and analyzed by means of transmission electron microscopy (TEM), Fourier transform infrared absorption spectrum (FT-IR), X-ray diffraction (XRD). The experiment results show that alkyphenol ethoxylates emulsifier can effectively coat on the surface of antimony nanoparticles, current density and electrolysis time have an important influence on the particle size of those obtained antimony nanoparticles. When the current density is 25mA/cm2 and electrolysis time is 30minutes, spherical antimony nanoparticles with an average diameter of 12nm and good dispersion can be prepared.

2011 ◽  
Vol 228-229 ◽  
pp. 639-644 ◽  
Author(s):  
Jian Lin Xu ◽  
Shu Hua Yang ◽  
Li Hui Zhang ◽  
Zhao Kang ◽  
Qiang Guo

The nano-antimony particles with different shape, size and stability are prepared by electrochemical method under the dilute hydrochloric acid electrolyte including the surface dispersant OP-10 and different current densities. The influences of current density on the shape and size of nanometer antimony particles prepared by electrochemical method are analyzed by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The results show that nano-antimony powder can be prepared by electrochemical method, and the antimony powder possesses the crystal structure with orthorhombic hexahedron. The current density has a significant impact on the agglomeration, shape and size of antimony powder. The size and shape of antimony powder are determined by the nucleation rate of nano-antimony and combination capacity of antimony ions and OP-10 surface dispersing agents affected by current density. When the current density is 25mA/cm2, the average particle size is 12nm or so, the shape is spherical, and the nano-antimony particles are well dispersed and no agglomeration.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Katayoon Kalantari ◽  
Mansor B. Ahmad ◽  
Kamyar Shameli ◽  
Mohd Zobir Bin Hussein ◽  
Roshanak Khandanlou ◽  
...  

Iron oxide nanoparticles (Fe3O4-NPs) were synthesized using chemical coprecipitation method. Fe3O4-NPs are located in interlamellar space and external surfaces of montmorillonite (MMT) as a solid supported at room temperature. The size of magnetite nanoparticles could be controlled by varying the amount of NaOH as reducing agent in the medium. The interlamellar space changed from 1.24 nm to 2.85 nm and average diameter of Fe3O4nanoparticles was from 12.88 nm to 8.24 nm. The synthesized nanoparticles were characterized using some instruments such as transmission electron microscopy, powder X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy, vibrating sample magnetometer, and Fourier transform infrared spectroscopy.


1998 ◽  
Vol 13 (11) ◽  
pp. 3174-3180 ◽  
Author(s):  
Ch. Beck ◽  
W. Härtl ◽  
R. Hempelmann

Using the hydrolysis of appropriate alkoxide mixtures in water-in-oil microemulsions, nanocrystalline BaTiO3 has been prepared in the form of nonaggregated, cube-shaped crystals at room temperature without any sintering process as is demonstrated by means of x-ray diffractograms and transmission electron micrographs. By variation of the length of the hydrophilic part of the surfactant molecules, the diameter of the water droplets in the microemulsions could be tuned to values between 8 and 55 nm as determined by dynamic light scattering. The size of the resulting nano-BaTiO3 (6 nm ≤ 〈d〉vol ≤ 17 nm) was evaluated from the line broadening of x-ray reflections and correlates to the droplet size. The particle size distribution is very narrow, and in some cases nearly monodisperse.


2011 ◽  
Vol 415-417 ◽  
pp. 648-651 ◽  
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
Chao Wang

Ag, Au and Ti metal nanoparticles colloids have been prepared by pulsed laser ablation in various liquids. The particle size and morphology of the obtained nanoparticles colloids were characterized by transmission electron microscopy (TEM), the average diameter and its distribution were analyzed by Image-ProPlus software. The results showed that the Au nanoparticles were of the best characterization, the average diameter was the smallest (D=8.79 nm), and also, the distribution of particle size was the narrowest (=17.5 nm) and the morphologies were more homogeneous.


2008 ◽  
Vol 8 (9) ◽  
pp. 4574-4578
Author(s):  
Bong-Sik Jeon ◽  
Seung-Jun Lee ◽  
Jong-Duk Kim

Magnetite nanoparticles were synthesized by chemical coprecipitation of ferric and ferrous aqueous solutions via regulation of the microenvironment at ambient conditions. Nanocrystals having an average diameter of 6 to 12 nm were obtained by picoliter droplets, whereas only 9 nm diameter nanocrystals were prepared by microliter droplets. The size of the nanocrystals was controlled by a precise balance of reactions of hydroxide ions with positive ions at the surface layer and inner layers of the droplets. The crystal structure and average size were analyzed by X-ray diffraction pattern and transmission electron microscope images. The field dependence and temperature dependence on magnetization measured by a superconducting quantum interference device demonstrate that the as-synthesized particles are superparamagnetic at room temperature and have a size-dependent magnetic property. The anisotropy constant calculated by the blocking temperature and particle size was found to decrease with increasing particle size.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Shirley Siew ◽  
W. C. deMendonca

The deleterious effect of post mortem degeneration results in a progressive loss of ultrastructural detail. This had led to reluctance (if not refusal) to examine autopsy material by means of transmission electron microscopy. Nevertheless, Johannesen has drawn attention to the fact that a sufficient amount of significant features may be preserved in order to enable the establishment of a definitive diagnosis, even on “graveyard” tissue.Routine histopathology of the autopsy organs of a woman of 78 showed the presence of a well circumscribed adenoma in the anterior lobe of the pituitary. The lesion came into close apposition to the pars intermedia. Its architecture was more compact and less vascular than that of the anterior lobe. However, there was some grouping of the cells in relation to blood vessels. The cells tended to be smaller, with a higher nucleocytoplasmic ratio. The cytoplasm showed a paucity of granules. In some of the cells, it was eosinophilic.


2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


2020 ◽  
Vol 9 (1) ◽  
pp. 496-502 ◽  
Author(s):  
Zhaohui Zhang ◽  
Bailong Liu ◽  
Mei Wu ◽  
Longxin Sun

AbstractThe electrochemical behavior of gold dissolution in the Cu2+–NH3–S2O32−–EDTA solution has been investigated in detail by deriving and analyzing the Tafel polarization curve, as this method is currently widely implemented for the electrode corrosion analysis. The dissolution rate of gold in Cu2+–NH3–S2O32−–EDTA solution was determined based on the Tafel polarization curves, and the effects of various compound compositions in a Cu2+–NH3–S2O32−–EDTA mixture on the corrosion potential and corrosion current density were analyzed. The results showed that the corrosion potential and polarization resistance decreased, whereas the corrosion current density increased for certain concentrations of S2O32−–NH3–Cu2+ and EDTA, indicating that the dissolution rate of gold had changed. The reason for promoting the dissolution of gold is also discussed.


2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


Sign in / Sign up

Export Citation Format

Share Document