Design Optimization of 2TPS/2TPR Parallel Manipulator Based on GA

2013 ◽  
Vol 568 ◽  
pp. 163-168
Author(s):  
Y.M. Wang ◽  
H.J. San ◽  
L. Jiang

4-DOF asymmetric parallel manipulator 2TPS /2TPR is researched in this paper. Firstly, the structure of 2TPS /2TPR is described in detail. Optimized design variables and constraints are sure. Then multi-objective optimization is built by flexibility and workspace of structure. Finally, design optimization of 2TPS/2TPR parallel manipulator based on GA. The optimal size combination of 2TPS /2TPR parallel manipulator is got.

Author(s):  
Gang Li ◽  
Ye Liu ◽  
Gang Zhao ◽  
Yan Zeng

There are inherently various uncertainties in practical engineering, and reliability-based design optimization (RBDO) and robust design optimization (RDO) are two well-established methodologies when considering the uncertainties. Naturally, reliability-based robust design optimization (RBRDO) is a methodology developed recently by combining RBDO and RDO, in which the tolerances of random design variables are always assumed as constants. However, the tolerance of random design variables is a key factor for the objective robustness and manufacturing cost, and the tolerance allocation is the core problem in mechanical manufacturing. Inspired by the cost–tolerance relationship in mechanical manufacturing, this paper presents an integrated framework to simultaneously find the optimal design variable and the corresponding tolerance in the multi-objective RBRDO, with the trade-off between objective robustness and manufacturing cost. The failure mechanism of the constraint handling strategy of the constrained reference vector-guided evolutionary algorithm (C-RVEA) is discussed to solve the multi-objective optimization formulation. Then the robust repair operator and reliability-based repair operator are proposed to transform unfeasible solutions to the feasible ones under reliability constraints. Numerical results reveal that the proposed repair algorithm is effective. By solving the integrated multi-objective optimization problem, the Pareto front with the compromised solutions between the objective robustness and manufacturing cost could be obtained, from which decision makers can select the satisfying solution conveniently according to the preferred requirements.


Author(s):  
Zhongzhe Chi ◽  
Dan Zhang

This paper presents optimizations of a parallel kinematic manipulator used for a machine tool in terms of its workspace and stiffness. The system stiffness and workspace of the parallel manipulator are conducted in the paper. In order to locate the maximum system stiffness and workspace, single and multi objective optimizations are performed in terms of rotation angles in x and y axes and translation displacement in z axis with Genetic Algorithms. By optimizing the design variables including geometric dimensions of the manipulator, the system stiffness and workspace of the proposed parallel kinematic manipulator has been greatly improved.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1155
Author(s):  
Lifang Zeng ◽  
Jianxin Hu ◽  
Dingyi Pan ◽  
Xueming Shao

A mono tiltrotor (MTR) design which combines concepts of a tiltrotor and coaxial rotor is presented. The aerodynamic modeling of the MTR based on blade element momentum theory (BEMT) is conducted, and the method is fully validated with previous experimental data. An automated optimization approach integrating BEMT modeling and optimization algorithms is developed. Parameters such as inter-rotor spacing, blade twist, taper ratio and aspect ratio are chosen as design variables. Single-objective (in hovering or in cruising state) optimizations and multi-objective (both in hovering and cruising states) optimizations are studied at preset design points; i.e., hovering trim and cruising trim. Two single-objective optimizations result in different sets of parameter selections according to the different design objectives. The multi-objective optimization is applied to obtain an identical and compromised selection of design parameters. An optimal point is chosen from the Pareto front of the multi-objective optimization. The optimized design has a better performance in terms of the figure of merit (FM) and propulsive efficiency, which are improved by 7.3% for FM and 13.4% for propulsive efficiency from the prototype, respectively. Further aerodynamic analysis confirmed that the optimized rotor has a much more uniform load distribution along the blade span, and therefore a better aerodynamic performance in both hovering and cruising states is achieved.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Author(s):  
Sayed Mir Shah Danish ◽  
Mikaeel Ahmadi ◽  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Narayanan Krishna ◽  
...  

AbstractThe optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.


2021 ◽  
Vol 9 (5) ◽  
pp. 478
Author(s):  
Hao Chen ◽  
Weikun Li ◽  
Weicheng Cui ◽  
Ping Yang ◽  
Linke Chen

Biomimetic robotic fish systems have attracted huge attention due to the advantages of flexibility and adaptability. They are typically complex systems that involve many disciplines. The design of robotic fish is a multi-objective multidisciplinary design optimization problem. However, the research on the design optimization of robotic fish is rare. In this paper, by combining an efficient multidisciplinary design optimization approach and a novel multi-objective optimization algorithm, a multi-objective multidisciplinary design optimization (MMDO) strategy named IDF-DMOEOA is proposed for the conceptual design of a three-joint robotic fish system. In the proposed IDF-DMOEOA strategy, the individual discipline feasible (IDF) approach is adopted. A novel multi-objective optimization algorithm, disruption-based multi-objective equilibrium optimization algorithm (DMOEOA), is utilized as the optimizer. The proposed MMDO strategy is first applied to the design optimization of the robotic fish system, and the robotic fish system is decomposed into four disciplines: hydrodynamics, propulsion, weight and equilibrium, and energy. The computational fluid dynamics (CFD) method is employed to predict the robotic fish’s hydrodynamics characteristics, and the backpropagation neural network is adopted as the surrogate model to reduce the CFD method’s computational expense. The optimization results indicate that the optimized robotic fish shows better performance than the initial design, proving the proposed IDF-DMOEOA strategy’s effectiveness.


2016 ◽  
Vol 693 ◽  
pp. 243-250
Author(s):  
Zhi Zhong Guo ◽  
Yun Shun Zhang ◽  
Shi Hao Liu

It is discovered that the vibration resistance of spindle systems needs to be improved based on the statics analysis, modal analysis and heating-force coupling analysis of spindle systems of CNC gantry machine tools. The design variables of optimization are set according to sensitivity analysis, multi-objective and dynamic optimization design is realized and its designing scheme is gained for spindle structure. The research results show that vibration resistance can be improved without change of the quality and static property of spindle systems of CNC gantry machine tools.


2014 ◽  
Vol 984-985 ◽  
pp. 419-424
Author(s):  
P. Sabarinath ◽  
M.R. Thansekhar ◽  
R. Saravanan

Arriving optimal solutions is one of the important tasks in engineering design. Many real-world design optimization problems involve multiple conflicting objectives. The design variables are of continuous or discrete in nature. In general, for solving Multi Objective Optimization methods weight method is preferred. In this method, all the objective functions are converted into a single objective function by assigning suitable weights to each objective functions. The main drawback lies in the selection of proper weights. Recently, evolutionary algorithms are used to find the nondominated optimal solutions called as Pareto optimal front in a single run. In recent years, Non-dominated Sorting Genetic Algorithm II (NSGA-II) finds increasing applications in solving multi objective problems comprising of conflicting objectives because of low computational requirements, elitism and parameter-less sharing approach. In this work, we propose a methodology which integrates NSGA-II and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for solving a two bar truss problem. NSGA-II searches for the Pareto set where two bar truss is evaluated in terms of minimizing the weight of the truss and minimizing the total displacement of the joint under the given load. Subsequently, TOPSIS selects the best compromise solution.


2020 ◽  
Vol 152 ◽  
pp. 103913 ◽  
Author(s):  
S. Nader Nabavi ◽  
Morteza Shariatee ◽  
Javad Enferadi ◽  
Alireza Akbarzadeh

2020 ◽  
Vol 21 (4) ◽  
pp. 412
Author(s):  
Salman Ebrahimi-Nejad ◽  
Majid Kheybari ◽  
Seyed Vahid Nourbakhsh Borujerd

In this paper, first, the vibrational governing equations for the suspension system of a selected sports car were derived using Lagrange's Equations. Then, numerical solutions of the equations were obtained to find the characteristic roots of the oscillating system, and the natural frequencies, mode shapes, and mass and stiffness matrices were obtained and verified. Next, the responses to unit step and unit impulse inputs were obtained. The paper compares the effects of various values of the damping coefficient and spring stiffness in order to identify which combination causes better suspension system performance. In this regard, we obtained and compared the time histories and the overshoot values of vehicle unsprung and sprung mass velocities, unsprung mass displacement, and suspension travel for various values of suspension stiffness (KS ) and damping (CS ) in a quarter-car model. Results indicate that the impulse imparted to the wheel is not affected by the values of CS and KS . Increasing KS will increase the maximum values of unsprung and sprung mass velocities and displacements, and increasing the value of CS slightly reduces the maximum values. By increasing both KS and CS we will have a smaller maximum suspension travel value. Although lower values of CS provide better ride quality, very low values are not effective. On the other hand, high values of CS and KS result in a stiffer suspension and the suspension will provide better handling and agility; the suspension should be designed with the best combination of design variables and operation parameters to provide optimum vibration performance. Finally, multi-objective optimization has been performed with the approach of choosing the best value for CS and KS and decreasing the maximum accelerations and displacements of unsprung and sprung masses, according to the TOPSIS method. Based on optimization results, the optimum range of KS is between 130 000–170 000, and the most favorable is 150, and 500 is the optimal mode for CS .


Sign in / Sign up

Export Citation Format

Share Document