Reduction of Elastic Modulus of Titanium Alloy Ti-6Al-4V by Quenching

2013 ◽  
Vol 586 ◽  
pp. 15-18 ◽  
Author(s):  
Evgeniy Anisimov ◽  
Maxim Puchnin

The use of nanoindentation techniques enhances the capabilities of qualitative analysis of elasto-plastic characteristics, especially, estimating mechanical properties of relatively small specimens in their surface layers. The results are in agreement with macromethods, which gather the information over the higher volume of the material. It was confirmed, that hardening of double phase Ti-6Al-4V alloy by quenching from beta temperatures (above beta-transus), reduces the elastic modulus by about 8 % due to increased ratio of low-modulus beta phase from 8 to 34 %.

2017 ◽  
Vol 743 ◽  
pp. 264-268 ◽  
Author(s):  
Anastasia Smirnova ◽  
Yury Pochivalov ◽  
Victor Panin ◽  
Anatoly Orishich ◽  
Aleksandr Malikov ◽  
...  

The structure and mechanical properties of welded joints of VT23 titanium alloy received by method of laser welding after modifying the surface layers by ultrasonic mechanical forging (Treatment 1 and Treatment 2) were investigated. The experimental tests have revealed that the Treatment 2 provides a multiple increase in the relaxation property in fatigue life test. The formation of nonuniform distribution of vanadium, chromium and molybdenum in the welded joint increases the strength and, at the same time, the brittleness of β-phase. Mechanical treatment of the surface layers in the second mode provides a multiple increase in ductility up to 13%, in the as-received condition up to 9.9%. In consequence of plastic deformation, the β-phase intensity reduces twice with Treatment 2 which is related to its clustering. As follows from a presented data, the fatigue life of the VT23 titanium alloy has increased more than threefold.


2020 ◽  
Vol 7 ◽  
pp. 18 ◽  
Author(s):  
Jian Zhang ◽  
Hongwei Li ◽  
Mei Zhan

The globularization of titanium alloy with lamellar colony during hot working is an important way to obtain fine and homogeneous microstructure which has excellent mechanical properties. Because of its great technological importance, globularization has captured wide attention and much research. This paper conducts a systematic study on state of art on globularization of titanium alloy, which mainly includes globularization mechanism, prediction model and the effects of hot-working parameters and microstructure parameters. Firstly, the shortcomings of the well-known globularization mechanisms (dynamic recrystallization, boundary splitting, shearing mechanism and termination migration) were summarized. Moreover, the comparison and analysis of prediction models were accomplished through tabular form. In addition, the effects of hot-working parameters (strain, strain rate, temperature) and microstructure parameters (alpha/beta interface, geometry necessary dislocation and high temperature parent beta phase) were systematically summarized and analyzed. Meanwhile, this study also explores those difficulties and challenges faced by precise control on globularization. Finally, an outlook and development tendency of globularization of titanium alloy are also provided, which includes microstructure evolution of three-dimensional lamellar alpha, the relationship between lamellar colony and mechanical properties and the effect of severe plastic deformation on globularization.


2012 ◽  
Vol 47 (5) ◽  
pp. 670-676 ◽  
Author(s):  
A. T. Pichuhin ◽  
O. I. Yas’kiv ◽  
O. H. Luk’yanenko ◽  
I. M. Pohrelyuk

2018 ◽  
Vol 26 (2(128)) ◽  
pp. 26-31 ◽  
Author(s):  
Munir Hussain ◽  
Feichao Zhu ◽  
Feichao Zhu ◽  
Bin Yu ◽  
Bin Yu ◽  
...  

The thermal properties and morphological characterisation of isotactic polypropylene (iPP) homopolymer and its blends with low molecular low modulus polypropylene (LMPP) were studied. Firstly blends were prepared with variant LMPP contents, and their properties were characterised using SEM, DSC, XRD, and DMA. Later the mechanical properties of iPP/LMPP blend fibres were investigated. SEM results showed that the iPP/LMPP blends produced smoother surfaces when the LMPP content was increased, as well as the miscibility. All the Tg values with different LMPP percentages were in-between pure iPP and LMPP. The XRD results indicated the LMPP percentage decreased along with the degree of crystallinity of the iPP/LMPP blends (5% to 15%), which increased and then decreased as compared to pure iPP. The elongation at break increased when the LMPP content increased, with the maximum breaking elongation of the LMPP 25% blend reaching 12.95%, which showed great stretch-ability, whereas the elastic modulus of iPP/LMPP blends decreased.


2018 ◽  
Vol 941 ◽  
pp. 1016-1022
Author(s):  
Yun Lian Qi ◽  
Li Ying Zeng ◽  
Yu Du ◽  
She Wei Xin ◽  
Wei Liu ◽  
...  

The effects of extrusion temperature and heat treatment on the microstructure and mechanical properties of beta-CEZ titanium alloy tube blank were studied with an emphasis on the relationship between the heat processing technique and microscopic structure. The results show that the extruded tube blank of beta-CEZ titanium alloy at alpha-beta phase has better tensile strength and plasticity match, and the ductility of the alpha-beta phase extrusion is obviously better than that of the single beta-phase extrusion, especially the reduction of area. When the extruded tube is heat treated at 830°C and 860°C solid solution, with the increase of aging temperature, the strength of tube decreases and the plasticity increases. When the aging temperature is up to 600°C, the reduction of area of the tube increases obviously. When the extruding tube is aged at 550°C and 600°C, the strength of the tube increases and the plasticity decreases with the increase of the solid solution temperature. The titanium alloy of beta-CEZ is extruded below the phase transition point after low temperature solid solution and high temperature aging treatment, which can achieve good microstructure and performance matching. The tensile strength is greater than 1250MPa, the elongation is more than 15%, and the reduction of area is more than 40%. The microstructure was a fine and uniform equiaxed structure.


2020 ◽  
Vol 405 ◽  
pp. 312-317
Author(s):  
Patrícia Hanusová ◽  
Peter Palček ◽  
Mária Chalupová ◽  
Milan Uhríčik

This paper deals with applications of biomaterial in the human body. Each biomaterial is characterized by biofunctionality and biocompatibility [1]. The choice of biomaterial for medical applications is established on mechanical properties. Therefor the Ti6Al4V alloys, which properties are relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance [2], are most widely used in biomedical replacements, implants, and prosthesis. Despite the excellent properties of the titanium alloy, endoprosthesis often fails and the hip replacement is necessary. Common causes are overloading and cracking, static or dynamic. Other causes of failure include injury, implantation failure, manufacturing inaccuracies, and non-compliance with the manufacturing process.


1996 ◽  
Vol 11 (2) ◽  
pp. 529-536 ◽  
Author(s):  
I. A. Ashcroft ◽  
G. M. Spinks

The mechanical properties of many polymers are known to change as they absorb water. This fact has been used to monitor the absorption of water into the surface layers of an epoxy adhesive with a depth sensing indentation system. Two methods have been demonstrated. The sample can be immersed in water for a period of time and then removed and tested in air. Alternatively, the sample can be tested in in situ. In the second method the transport of water through the adhesive can clearly be seen in hardness/depth profiles. Hardness, elastic modulus, and creep strain of the adhesive change with time until a stable value is reached, which corresponds to full plasticization of the adhesive to the influence depth of the indenter. The initial mechanical properties of the epoxy are mostly recovered on drying.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 268
Author(s):  
Ji-Hoon Jang ◽  
Dong-Geun Lee

The cytotoxic tissue reactions of alloying elements (Al, V) of Ti-6Al-4V have been reported, whereas the Ti-39Nb-6Zr (TNZ40) alloy developed by adding β-phase stabilizing elements is known to have no cytotoxicity and exhibits excellent biocompatibility. In addition, there is a slight modulus difference between the TNZ40 alloy and human bones as the elastic modulus of the TNZ40 alloy is very low. This can inhibit detrimental effects such as osteoblast loss due to a stress-shielding effect. In this study, various Si contents were added and heat treatment under various conditions was performed to control the microstructure and mechanical properties of the TNZ40 alloy. In the β-type titanium alloy, the ω phase is commonly observed by quenching from the solution-treatment or aging-treatment temperature. These ω precipitates can typically increase the elastic modulus, hardness, and embrittlement of the β-type titanium alloy, which are important to control this phase. The correlation between Si content and precipitation and the effects of solution treatment and aging condition on the mechanical properties such as tensile strength, and hardness, were analyzed.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 652
Author(s):  
Mykola Chausov ◽  
Oleg Khyzhun ◽  
Janette Brezinová ◽  
Pavlo Maruschak ◽  
Andrii Pylypenko ◽  
...  

Improvement in the mechanical properties of sheet two-phase high-strength titanium alloy VT23 due to impact-oscillatory loading and the use of carbon nanosolutions at room temperature was tested experimentally. It was shown that in addition to obtaining a significant increase in the initial plastic deformation of the alloy, it is possible to strengthen the surface layers of the alloy by a factor of 8.4% at a time via the impulse introduction of energy into the alloy and the use of carbon nanosolutions. Using X-ray photoelectron spectroscopy (XPS), it was first found that strengthening of the surface layers of the titanium alloy at a given load, in line with using a carbon nanosolution, leads to the formation of a mixture of titanium oxide and titanium carbide or oxycarbide of type TiO2−xCx on the surface.


Author(s):  
S. Fujishiro

In an effort to increase the elastic modulus of commercial Beta-III Titanium alloy (Ti-12Mo4.5Sn5.5Zr) without impairing other mechanical properties, the alloy has been solutionized in the beta and beta/alpha fields and subsequently aged at the alpha and alpha/omega forming temperature range, following water quench; the volume fraction and morphology of the precipitation phases govern the elastic modulus and other mechanical characteristics. Dilatometric technique was employed to determine the omega forming range which is indicated by a notable contraction; contraction is due to depletion of the Mo content in the beta phase. TEM was utilized in order to identify the phases and define morphology whereas the volume fraction of phases was determined by X-ray.


Sign in / Sign up

Export Citation Format

Share Document