Research on Multi-Walled Carbon Nanotubes by Fiber Laser Irradiation

2014 ◽  
Vol 609-610 ◽  
pp. 382-387 ◽  
Author(s):  
Quan Shuang Su ◽  
Ji Min Chen ◽  
Fu Rong Liu

In this paper we report Multi-walled carbon nanotubes (MWCNTs) have been joined together by continuous wave fiber laser operating at 1064 nm. The SEM image clearly shows that there are obvious melting - solidified phenomenon between the jointed Multi-walled carbon nanotubes. MWCNTs wall was complete and smooth without destruction phenomenon. The new graphite layers were found in the connection with transmission electron microscopy (TEM). Besides, we observed that the present multi-walled carbon nanotubes showed the trend of melting connecting to destruction as the laser irradiation time increased in the case of a certain power density. In the end, there were recrystallization phenomena during MWCNTs joining with the Raman spectra. The crystallinity and length to diameter ratio decreased following the increasing irradiation time.

2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 224 ◽  
Author(s):  
Jung-Eun Park ◽  
Yong-Seok Jang ◽  
Tae-Sung Bae ◽  
Min-Ho Lee

Multi walled carbon nanotubes-hydroxyapatite (MWCNTs-HA) with various contents of MWCNTs was synthesized using the sol-gel method. MWCNTs-HA composites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were generated on the surface of MWCNT. Produced MWCNTs-HA nanocomposites were coated on pure titanium (PT). Characteristic of the titanium coated MWCNTs-HA was evaluated by field-emission scanning electron microscopy (FE-SEM) and XRD. The results show that the titanium surface was covered with MWCNTs-HA nanoparticles and MWCNTs help form the crystalized hydroxyapatite. Furthermore, the MWCNTs-HA coated titanium was investigated for in vitro cellular responses. Cell proliferation and differentiation were improved on the surface of MWCNT-HA coated titanium.


2015 ◽  
Vol 74 (8) ◽  
Author(s):  
A. A. Latiff ◽  
M. T. Ahmad ◽  
Z. Zakaria ◽  
H. Ahmad ◽  
S. W. Harun

An 1892.4 nm ultrafast passive Q-switched fiber laser is demonstrated by using Thulium-doped fiber (TDF) in conjunction with a multi-walled carbon nanotubes (MWCNTs) as a saturable absorber (SA). The MWCNTs film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity with 802 nm pump for Q-switching pulse generation. The pulse repetition rate can be tuned from 3.8 to 4.6 kHz while the corresponding pulse width reduces from 22.1 to 18.4 μs as the pump power is increased from 187.3 to 194.2 mW. A higher performance Q-switched Thulium-doped fiber laser (TDFL) is expected to be achieved with the optimization of the MWCNT-SA saturable absorber and laser cavity.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Shuang-Xi Xue ◽  
Qin-Tao Li ◽  
Xian-Rui Zhao ◽  
Qin-Yi Shi ◽  
Zhi-Gang Li ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) were irradiated by 1.2 keV Ar ion beams for 15–60 min at room temperature with current density of 60 µA/cm2. The morphology and microstructure are investigated by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results show that carbon nanofibers are achieved after 60 min ion irradiation and the formation of carbon nanofibers proceeds through four periods, carbon nanotubes—amorphous carbon nanowires—carbon nanoparticles along the tube axis—conical protrusions on the nanoparticles surface—carbon nanofibers from the conical protrusions.


2007 ◽  
Vol 334-335 ◽  
pp. 685-688
Author(s):  
Dong Lin Zhao ◽  
Xia Li ◽  
Wei Dong Chi ◽  
Zeng Min Shen

The filling of multi-walled carbon nanotubes (MWNTs) with metallic silver nanowires via wet chemistry method was investigated. The carbon nanotubes were filled with long continuous silver nanowires. The carbon nanotubes were almost opened and cut after being treated with concentrated nitric acid. Silver nitrate solution filled carbon nanotubes by capillarity. Carbon nanotubes were filled with silver nanowires after calcinations by hydrogen. The diameters of silver nanowires were in the range of 20-40nm, and lengths of 100nm-10μm. We studied the micromorphology of the silver nanowires filled in carbon nanotubes by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Based on the experimental results, a formation mechanism of the Ag nanowire-filled carbon nanotubes was proposed. And the microwave permittivity of the carbon nanotubes filled with metallic silver nanowires was measured in the frequency range from 2 GHz to 18 GHz. The loss tangent of the carbon nanotubes filled with metallic silver nanowires is high. So the carbon nanotubes filled with metallic silver nanowires would be a good candidate for microwave absorbent.


2015 ◽  
Vol 19 (04) ◽  
pp. 622-630 ◽  
Author(s):  
Saeed Rayati ◽  
Zahra Sheybanifard

In the present work, oxidation of alkenes with hydrogen peroxide in the presence of meso-tetrakis(4-hydroxyphenyl)porphyrinatoiron(III) chloride supported onto surface of functionalized multi-wall carbon nanotubes (FMWCNT), [ Fe ( THPP ) Cl@MWCNT ], is reported. The simple heterogeneous catalyst was characterized by FT-IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and also thermal analysis. The amount of the catalyst loaded on the nanotubes was determined by atomic absorption spectroscopy. This heterogeneous catalyst proved to be an efficient and green catalyst and was successfully able to activate hydrogen peroxide without any additive toward the oxidation of alkenes in ethanol as a green solvent. Performance of the catalyst in oxidation of various alkenes was inspected under reflux, ultrasonic irradiation and mechanical stirring. Moreover, the catalyst can be reused several times under similar conditions.


2017 ◽  
Vol 76 (10) ◽  
pp. 2593-2602 ◽  
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Sedighi ◽  
Ehsan Jabbari

Abstract This paper reports a facile method for removal of sulfate from wastewater by magnetic multi-walled carbon nanotubes (MMWCNTs). Multi-walled carbon nanotubes and MMWCNTs were characterized by X-ray diffraction, Raman, transmission electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The results of the analysis indicated that MMWCNTs were synthesized successfully. The MMWCNTs can be easily manipulated in a magnetic field for the desired separation, leading to the removal of sulfate from wastewater. Response surface methodology (RSM) coupled with central composite design was applied to evaluate the effects of D/C (adsorbent dosage per initial concentration of pollutant (mgadsorbent/(mg/l)initial)) and pH on sulfate removal (%). Using RSM methodology, a quadratic polynomial equation was obtained, for removal of sulfate, by multiple regression analysis. The optimum combination for maximum sulfate removal of 93.28% was pH = 5.96 and D/C = 24.35. The experimental data were evaluated by the Langmuir and Freundlich adsorption models. The adsorption capacity of sulfate in the studied concentration range was 56.94 (mg/g). It was found out that the MMWCNTs could be considered as a promising adsorbent for the removal of sulfate from wastewater.


Sign in / Sign up

Export Citation Format

Share Document